
PROACTIVE DETECTION OF KERNEL-MODE ROOTKITS

Pablo Bravo, Daniel F. García
Department of Informatics

University of Oviedo
Oviedo, Spain

{UO139758,dfgarcia}@uniovi.es

Abstract—The sophistication of malicious software (malware)
used to break the computer security has increased
exponentially in the last years. Frequently, malware is hidden
into a computer by software components called rootkits.
Therefore, early detection of rootkits is of primary importance
to avoid the uncontrolled operation of malware. Most of
current techniques for rootkit detection only allow a late
detection after the malware has already been hidden by a
rootkit. In this paper, a new technique is presented that
enables the proactive detection of rootkits while they are
hiding malware, and therefore, allowing that hiding can be
avoided. The technique has been designed for rootkits that
operate in kernel-mode. This rootkits are particularly difficult
to detect because both the detector and the rootkit are executed
with the same privileges. This technique can be used to
improve the detection capabilities of intrusion detection and
prevention systems.

Keywords-Malware; Rootkits; Stealth software; Hooking

I. INTRODUCTION

Rootkits, or more generically stealth malware, are
software components used to hide objects inside a computer
system. Generally, the objects hidden by rootkits are
processes and files.

 The nature of rootkit operation implies that they are
usually detected by crossview detection. This kind of
detection method cross checks the information obtained from
a raw object enumeration with the vision that a program
using the operating system API would get. This implies solid
knowledge of the functionality of the operating system and
its data structures. This technique detects the presence of
rootkits into the system but does not stop them from
operating. In addition, the time period in which the malware
has executed its actions is undetermined.

This paper presents a new technique that allows the
detection of a particular modification in data or code of the
operating system. The paper focuses on Windows NT family
over Intel architecture, although the same ideas are
applicable to UNIX systems and even to other processor
architectures if they operate with paged memory.

II. TECHNOLOGICAL BACKGROUND

One of the latest technologies used for malware aid is
rootkit technology. The rootkits hide system objects such as

files, processes, drivers, registry keys, etc., which are
generally related to a malware element.

Originally, rootkits were understood to be toolkits that
allowed an attacker to subvert an UNIX system and
maintain root privileges over it without being detected by
the system administrator. On UNIX systems, after a
successful exploitation of a bug which allowed the attacker
to obtain root privileges, the attacker usually made use of
this kind of tools. They allowed him to hide the processes or
TCP channels so he could continue making use of the
attacked computer. These tools were trojanized versions of
the original programs installed in the system. For example,
the toolkit could include a version of the ps program which
omitted the processes the attacker uses to his own
benefit [1].

However, there have been recent changes in the malware
scenario. Current stealth software presents a more technical
profile so the definition must be expanded to include code
that executes information hiding tasks in a compromised
system [2]. Thus, the current definition of a rootkit is any
software that gives continued privileged access to a
computer while actively hiding its presence and other
information from administrators by subverting standard
operating system functionality or other applications.

Currently, the complexity achieved by both malware and
anti-malware software is very significant. This can be seen
in [3] for PCI rootkits, in [4] for SMM rootkits, in [5] for
MBR rootkits, and in [6] for rootkits that manipulates the
memory page tables of the processor.

We must distinguish between the rootkit and a possible
associated malware element which is hidden by the rootkit.
Rootkit technology, as we understand it nowadays, is not
malicious in itself, but generally its application is. However,
the hidden object can be the rootkit itself, which probably
implies some kind of malware rootkit.

Rootkits are mainly classified in terms of their
execution mode on the processor [7], [8]. Those modes are:

• User mode: The rootkit usually affects a single user
process. If system wide hiding is desired, all the user
mode processes in the system are subverted. To
achieve its goals, the rootkit is loaded in the address
space of the victim process. The mechanism used to
infect the processes usually implies some kind of code

injection (legal or illegal) and once the code is loaded,
it hooks system API functions to perform its malicious
actions. The two main hooking techniques are: Import
Address Table (IAT) deviation and detouring via code
overwriting. The rootkit can also take the form of a
trojanized binary module which executes additional
actions to those expected by the user.

• Kernel mode: The rootkit usually takes the form of a
dynamic kernel module, which is loaded in the kernel
memory. Once loaded, it can operate by detouring
system calls (type 1) or modifying the data structures
of the operating system directly (type 2) [9].

III. RELATED WORK ON ROOTKIT DETECTION

There are two main types of techniques for detecting a
rootkit: those which detect the presence of the rootkit and
those which detect the behavior of the rootkit.

To detect the presence the rootkit, several elements in
the system should be inspected. The rootkit must use the
system resources so there may be inconsistencies that the
rootkit does not take into account. A rootkit detector should
inspect the following elements:

• File system: The detector must look for a byte pattern
that identifies a known rootkit (or malware in the most
general case). This is the traditional antivirus
approach.

• System mechanisms that allow a binary module to be
loaded into memory: Functions such as NtLoadDriver
or NtOpenSection allow code to be loaded into
memory. Unfortunately, there are a lot of functions
which can be used to load code into memory [2], and
there are also other methods like registry keys which
can load modules into memory. These registry keys
are process dependent, which further complicate the
inspection. This technique follows a “protecting the
gate” approach.

• Virtual memory modules: A rootkit detector can walk
through the list of modules loaded into memory in
order to find a byte pattern which identifies a rootkit
[10]. This approach is the same as the detection
technique in a file system, but applied to memory
modules.

• Hooks: A type 1 rootkit must modify somehow the
execution flow of system code. This approach is used
in the anti-rootkit VICE system introduced in [11] and
in its evolution RAIDE, introduced in [12]. Typical
elements to inspect are:

• IAT (Import Address Table)
• SSDT (System Service Dispatch Table)
• IDT (Interrupt Descriptor Table)
• Drivers’ I/O Request Packet (IRP) handler
• Inline hooks.

• Tracing execution: This is another technique to look
for hooks in the system. It is presented in [13]. The

idea is to instrument a clean system to obtain the
number of instructions that a given code path should
execute. The premise is that hooks will increment the
number of instructions executed for a given code path.
This technique is questionable as the same code path
executes a different number of instructions depending
on different factors. Although in [13] is affirmed that
the difference is appreciable for known rootkits, this
could depend upon the sophistication of the attack.

The main disadvantage of all the techniques based on
presence detection is that as new attack techniques are
developed, the detection process must protect more
elements that the rootkit could use to its benefit.

To detect rootkit behavior, the main technique is
crossview detection [14]. This technique compares a set of
objects obtained by a high level process with a raw
enumeration, performed almost at hardware level. Any
differences imply that there is a rootkit in the system. The
main disadvantage of this technique is that, although
evidence of intrusion in the system is detected, neither the
rootkit nor its associated malware are identified. One
advanced antirootkit system using this technique is Strider
GhostBuster developed by Microsoft Research and
introduced in [15].

There are also other complex techniques that are focused
on the detection of the hooking process [16].

It is important to notice that none of the aforementioned
techniques prevent the installation of the rootkit in the
system. They only allow detection at a later stage when the
rootkit is already installed in the system.

However, one of the newest antimalware defenses
consists in components that anticipate the presence and
operation of user-mode malware. They generally do so by
monitoring user processes from kernel modules and
observing their behavior. Then, they can infer if the
observed behavior is suspicious and act consequently. These
techniques can work because of the different protection
levels of execution modes in Intel processors. User-mode
processes always run in a less privileged mode than the
kernel. This way, the kernel can monitor and modify user-
mode processes if it is required.

But when malware executes in kernel-mode, the
privileges of malware and operating system are the same.
Kernel-mode antiviral modules have no privileges over
kernel-mode malware modules, so malware cannot be
monitored and the required information to detect malicious
behavior dynamically cannot be collected.

In fact, current detection techniques for kernel-mode
rootkits are the already explained ones. The most important
problem they suffer is that the detection cannot be
anticipated, and rootkits can only be detected at a later stage,
when they have already been operating for an undetermined
time. It would be very interesting if rootkit operation could
be monitored in real-time so an antimalware engine could
not only detect but even prevent the rootkit actions. The new
technique presented in this paper achieves this goal.

IV. THE NEW TECHNIQUE FOR ROOTKIT DETECTION

This paper proposes a new technique to detect any
software module (rootkit) which patches the System Service
Description Table (SSDT) or manipulates the process list in
Windows systems in order to hide processes. This technique
is based on gaining execution at the moment that the code or
data of the operating system is being patched (modified).
This is achieved by hooking the page fault handler in the
Interrupt Descriptor Table (IDT), and then, manipulating the
kernel page tables to set the memory pages to be monitored
as "not-present".

In this way, the page where the SSDT resides can be
hidden and write accesses over it can be detected. In case of
a writing trial to the SSDT, the module responsible for the
modification can be identified analyzing the stack. The
identity of the responsible module can be used to decide
whether to allow or deny the modification. This is important
as the technique of SSDT detouring is also used by legal
software such as any antivirus.

The same concept can be applied for monitoring accesses
to the process list. In this particular case another problem
arises because the nodes of the process list are obtained from
a non-paged memory pool in a dynamic fashion. Therefore, a
technique to hook system memory allocations is used. Then,
when a node of the process list is allocated, the memory
allocated is detoured to a controlled memory page which can
be monitored. In this manner, the allocation and deallocation
of nodes of the process list can be controlled. Once allocated
to a controlled memory page, it is possible to detect when the
pointers to the nodes of the process list are manipulated.
Once again, stack walk is used to determine which module is
deleting the node. If it is not the operating system itself, it is
probably due to an attempt to hide the process.

There are three major components involved in the
proposed mechanism:

 The IDT hook and page fault handler.
 The memory allocation and deallocation handler.
 The finder of the memory writer modules.
Each component is examined in depth in the following

sections.

A. The IDT hook and the page fault handler

To control the page fault handling mechanism, the code
responsible for resolving page faults must be hooked. The
best way to do this is modifying the 0x0E entry (page fault
exception) in the IDT. Firstly, the IDT address must be
located executing the SIDT instruction. There is an IDT per
processor. Once located in the IDT, the page fault handler
entry is overwritten with our own handler, and the
overwritten entry corresponding to the system page fault
handler is saved. A debug trap handler (0x01 exception)
must also be installed in order to restore the presence-bit
state of the pages monitored in order that they can continue
being monitored.

One often subverted Windows structure is the SSDT. The
SSDT is used to resolve API system calls [2]. It contains a
pointer to an array of function pointers (denominated
services array) and its length, among other information.

Every user-mode system function has an index in this array
of function pointers. In this way, when a system function is
invoked, the kernel uses this table with the appropriate index
and transfers the execution flow to the function responsible
for serving the call. Remind that there are two important
elements: the SSDT and the services array.

Once our handlers are installed, the presence bit of
almost any memory page can be turned off and the accesses
to memory pages are monitored, in particular to the page
where the SSDT resides. The monitoring process is shown in
figure 1. In the left column shows the software modules
involved on a purple background. On the right, are the
memory pages accessed by the modules on an orange
background.

The following points describe the monitoring process.
The point numbers correspond to the numbers in the circles
of figure 1.

(1) A rootkit tries to hook a function of the operating
system denominated NtOriginalFunction. It performs the
hooking by overwriting the entry of SSDT table at the
0xXXXXX0FF address, which is where the pointer to
NtOriginalFunction resides in the services array of the
SSDT.

(2) The rootkit tries to write on the memory page
containing the services array. This page is being monitored,
and therefore, it appears as not present in the physical
memory because its presence-bit has been set to 0 in its entry
of the page table.

(3) The system triggers a page fault trap which invokes
the page fault handler. As our page fault handler was
installed previously, it gains execution. Then, our page fault
handler determines if the faulting address belongs to a
monitored memory page. In this case, it looks for the code
that tries to access the page, presumably belonging to a
rootkit module.

(4) Our page fault handler sets the presence bit of the
offending page to 1, making it visible for further memory
accesses.

(5) Our page fault handler also changes the trap flag of
the thread that is executing the rootkit code. This forces to
run the rootkit code in debug mode, triggering a debug
exception after the execution of each instruction.

(6) When our page fault handler has finished, the
offending instruction is re-executed successfully.

(7) As the instruction execution was successful, the
0xXXXXX0FF address is written with the address of the
rootkit function. Thus, the rootkit has effectively hooked the
NtOriginalFunction of the system.

(8) As our page fault handler has put the thread executing
the rootkit code in debug mode, just after the execution of
each instruction a debug trap is executed, and our handler
gains execution again.

(9) Our debug trap handler restores the data if this is the
desired action. Remember that the offending code has been
identified as belonging to a rootkit module.

(10) Next, our debug trap handler hides the page again by
setting its presence bit to 0.

(11) Finally, our debug trap handler deactivates the
debug mode in the offending thread.

•Is it a trap we provoked?  YES
•Should we undo the change  YES
•Ok, do the following:

•Rewrite the original data
•Set the presence bit to 0
•Unset the trap flag in the rootkit thread

Our Debug Trap Handler

•Is it a page we monitor? YES
•Is it a write access?  YES
•Look for the module trying to perform the

writing  Rootkit Module
•Ok, do the following:

•Set the presence bit to 1
•Change the rootkit thread flags to launch

an int 0x01
•Record the change to undo it

Our Page Fault Handler

Rootkit Code EFLAGS – Trap Flag = 0

EFLAGS – Trap Flag = 1

…
0xXXXXX0FC: NtOneFunction
0xXXXXX100: NtOriginalFunction
0xXXXXX104: NtAnotherFunction
…

Page Table Entry – Presence Bit = 0

…
0xXXXXX0FC: NtOneFunction
0xXXXXX100: RootkitFunction
0xXXXXX104: NtAnotherFunction
…

Page Table Entry – Presence Bit = 1

…
0xXXXXX0FC: NtOneFunction
0xXXXXX100: NtOriginalFunction
0xXXXXX104: NtAnotherFunction
…

Page Table Entry – Presence Bit = 0

5

mov edi, edi
push ebp
mov ebp, esp
...
mov ecx, [0xXXXXX0FF] ;Save NtFunction
mov [NtOriginalFunction], ecx
mov eax, [RootkitFunction] ;Install Rootkit
mov [0xXXXXX0FF], eax
...
pop ebp
ret

4

3

1

5

11

9

10

7

4

2

6
8

10
11

9

8

Fig 1. Page Monitoring Technique

B. The memory allocation and deallocation handler

One technique to hide processes in Windows is by
manipulating the process list directly. This is an example of
Direct Kernel Object Manipulation (DKOM), also known as
type 2 malware.

Windows processes are represented by a record called
EPROCESS. If the EPROCESS records are in a page which
can be monitored, accesses to EPROCESS records can be
detected and the hiding of a process can be monitored.
Figure 2 shows the technique to allocate EPROCESS records
in monitored pages. The upper area shows the execution path
followed when the system is allocating memory. The lower
area shows the memory given to the system in two cases:
allocating an EPROCESS and another memory.

The following points describe this technique. The point
numbers correspond to the numbers in circles in figure 2.

(1) The operating system creates a new process and
allocates memory for the new EPROCESS record.

(2) The memory allocation function has been hooked in
order to inspect every memory allocation in the system.

(3) If memory is not allocated for a new EPROCESS,
the execution is returned to the original function.

(4) In this case, the original function finishes its
execution by giving a block of memory to the calling code
which is then allocated in a system page.

(5) On the other hand, if the memory allocation is for an
EPROCESS (which can be seen in the “tag” parameter), a
previously allocated page which can be monitored is used to
host the EPROCESS record.

With this technique, accesses to the linking fields in an
EPROCESS record as well as the behavior shown in figure 2
can be monitored. A complementary mechanism has been
developed for memory deallocation, because when the
system deletes an EPROCESS, the execution flow must be
detoured to avoid a system inconsistency.

C. The finder of the memory writer modules

Determining which module has generated a modification
is as important as the modification itself. The operation of
the finder is shown in figure 3. The left part shows the stack
of the thread performing the write operation. The stack
grows from bottom to top in figure 3 towards low addresses.
The right part shows the modules (addresses and their
content). The CR2 register of an Intel processor contains the
address of the instruction that provoked a page fault.

; mov edi, edi ; Original
; push ebp ; Code
;mov ebp, esp ; Sequence
jmp [OurExallocatePoolWithTag]

Continue_ExAllocatePoolWithTag:
…
; Allocate memory
…
mov eax, [AllocatedMemory]
pop ebp
ret 12

ExAllocatePoolWithTag

…
; Allocate an executive structure for a
;process
; ‘Pro.’
push 0xE36F7250
;sizeof(EPROCESS)
push 0x000001F8
; POOL_TYPE = NonPagedPool
push 0
call [ExAllocatePoolWithTag]
mov [NewEPROCESS], eax
…

Windows Process Creation

if (! EPROCESS allocation)
{

Prepare the execution context and …
jmp [Continue_ExAllocatePoolWithTag]

}
else //EPROCESS Allocation
{

//Assign a new page from our pool
//to the new EPROCESS
mov eax, [NewEPROCESS]
pop ebp
ret 12

}

OurExAllocatePoolWithTag

System Page

Allocated Memory

Monitored Page

New EPROCESS

Next

Back

2

5
1

3

4

Code Path

Our Served Memory Path

System Served Memory Path

Fig 2. Memory Allocation Handler in action

In the first scenario, the exception record placed in the

stack, in a green box in figure 3, shows that the write access
on a monitored page was originated by the rootkit module.

In fact, the finder can obtain the exact address where the
write access is performed. In this scenario is straightforward
determine the responsible module of the modification,
because, as figure 3 shows, the finder can infer the writer
module directly from the faulting EIP stored in the stack, as
this virtual address belongs to the rootkit module.

In the second scenario, find the writer module is a little
more complicated. The write access is performed by a helper
function located in NtosKrnl module. This function is called
by the rootkit code and performs an atomic write on the
memory address indicated by its first parameter with the
value of the second parameter.

By examining only the exception record, surrounded by a
green box in figure 3, the finder would suppose that the
modification was originated by the kernel itself. But this is
not correct, because the real responsible of the write access is
the rootkit that called the helper system function.

So the finder must analyze the stack in order to find the
true writer module. As the rootkit code performed a function
call, the stack must contain an activation record
corresponding to this call. Figure 3 shows the activation
record surrounded by a blue box, which has the two
parameters passed to the function, the return address and

locals. Using that return address, which belongs to the
address range of the rootkit module, the finder can infer that
the module which performed the memory write was, in fact,
the rootkit module.

V. EVALUATION OF THE TECHNIQUE

The evaluation of the proposed technique was based on
black-box testing. The evaluation method consisted of
installing a kernel module containing the implementation of
the proposed technique, and then executing several software
which is known to hook Windows SSDT and hide processes
manipulating the process list. The software used in the test
was primarily malware and antivirus. The tests were
performed in a Windows XP with Service Pack 2 running on
an Intel IA-32 machine with 1GB of RAM.

The SSDT hooking tests have shown, without prior
knowledge, that Karspersky Antivirus hooks almost all
SSDT functions, and also that rootkits usually hook five or
six system functions, all of them directly related with its
purpose, such as NtEnumProcesses.

Other successful test was the monitoring of an encrypted
rootkit (Mitglieder.OM). The application of reverse
engineering to this rootkit in order to determine the system
function that it modifies is extremely difficult. But once the
rootkit was running, the proposed technique discovered the
SSDT functions hooked by this rootkit.

CR2 = [NtOriginalFunction]

Stack
Rootkit Module

NtosKrnl Module

...
; Perform the write
0x804d8025: lock cmpxchg [param1], param2
0x804d8029: jne 0x804d8025
…

InterlockedExchange

...
; Perform Rootkit behavior
…

RootkitFunction

0xff340c4a: mov eax, [RootkitFunction]
0xff340c50: mov [NtOriginalFunction], eax

Scenario 1

0xff340c50: call InterlockedExchange
([NtOriginalFunction], RootkitFunction)

0xff340c55: …

Scenario 2

0xffc00ab4: Error Code (Mostly 0x00000003)
0xffc00ab8: EIP (0xff34c050  Inside Rootkit Module)
0xffc00abc: CS
0xffc00ac0: EFLAGS
0xffc00ac4: … (Locals)
0xffc00ac8: … (Locals)
0xffc00acc: 0xffc00ae0 (EBP)
0xffc00acd: …

Scenario 1 – Top of Stack (ESP) = 0xffc00ab4

0xffc00aa0: Error Code (Mostly 0x00000003)
0xffc00aa4: EIP (0x804d8025  Inside NtosKrnl)
0xffc00aa8: CS
0xffc00aac: EFLAGS
0xffc00ab0: … (Locals of InterlockedExchange)
0xffc00ab4: 0xffc00acc (EBP)
0xffc00ab8: 0xff340c55
0xffc00abc: [NtOriginalFunction]
0xffc00ac0: RootkitFunction
0xffc00ac4: … (Locals)
0xffc00ac8: … (Locals)
0xffc00acc: 0xffc00ae0 (Older EBP)
0xffc00ad0: …

Scenario 2 – Top of Stack (ESP) = 0xffc00aa0

Fig 3. Analysis of the stack to find the memory writer module

In the case of processes hiding, the test used the proof-of-

concept “Fu” rootkit for hiding processes which uses the
aforementioned technique involving process unlinking,
verifying that the process hiding trial is detected and that the
module responsible is correctly identified.

To further validate the obtained results, the tests should
be performed on additional platforms, primarily different
operating system versions with different customizations,
service packs and hardware.

VI. CONCLUSIONS AND FUTURE WORK

A new technique to detect modifications on parts of the
operating system kernel has been developed. It has been
applied it to monitor the parts most often modified by kernel-
mode rootkits and its usefulness has been verified. This
technique detects patching trials of the operating system by
unknown modules on the fly.

There are various ways to evade our technique, for
example, modifying the IDT page fault entry again, thus
disabling the mechanism. Furthermore, the page containing
the IDT cannot be protected by our technique as it must be a
present page in memory to avoid a processor triple fault.

Future work includes extending the technique to handle
different paging schemas such as large pages. Also, a more
robust mechanism to analyze the stack, probably based on
frame walk using the EBP processor register, should be
developed.

REFERENCES
[1] S. Manap, “Rootkit: Attacker undercover tools,” Personal

Communication, 2001.

[2] G. Hoglund and J. Butler, Rootkits: Subverting the windows kernel.
Addison Wesley, Boston, USA, 2006.

[3] J. Heasman, “Implementing a PCI rootkit,” White paper of Next
Generation Security Software Ltd., 2006.

[4] F. Wecherowski, “A real SMM rootkit: Reversing and hooking BIOS
SMI handlers,” Phrack Magazine, Volume 13, Issue 66, 2009.

[5] E. Florio and K. Kasslin, “Your computer is now stoned (again!): The
rise of MBR rootkits,” Technical Report of Symantec.

[6] J. Butler and S. Sparks, “ShadowWalker: Raising the bar for
Windows rootkit detection,” Phrack Magazine, Volume 11, Issue 63,
2005.

[7] R. Siles, "Linux kernel rootkits: protecting the system’s ring-zero,"
White paper of SANS Institute, 2004.

[8] D. Harley and A. Lee, “The root of all evil: Rootkits revealed,”
Technical Report of ESET, 2009.

[9] J. Rutkowska, “Introducing stealth malware taxonomy,” White paper
of COSEINC Advanced Malware Labs, 2006.

[10] A. Shah, "Analysis of rootkits: Attack approaches and detection
mechanisms," Technical Report of Georgia Institute of Technology,
2008.

[11] J. Butler and G. Hoglund, " VICE – Catch the hookers! (Plus new
rootkit techniques)," Black Hat USA 2004 Conference, Las Vegas,
USA, 2004.

[12] J. Butler and S. Sparks, "ShadowWalker: Raising the bar for
Windows rootkit detection," Phrack Magazine, Volume 11, Issue 63,
2005.

[13] J. Rutkowska, "Detecting Windows Server compromises with
Patchfinder 2," Personal Communication, January 2004.

[14] J. Rutkowska, "Thoughts about crossview based rootkit detection,"
White paper of InvisibleThings, 2005.

[15] Y.-M. Wang, " Strider Ghostbuster: Why it’s a bad idea for stealth
software to hide files," Technical Report MSR-TR-2004-71 of
Microsoft, 2004.

[16] H. Yin et al., "HookScout: Proactive binary-centric hook detection”,
7th Conf. on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA’10), Bonn, Germany, 2010.

