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Abstract—The sophistication of malicious software (malware) 
used to break the computer security has increased 
exponentially in the last years. Frequently, malware is hidden 
into a computer by software components called rootkits. 
Therefore, early detection of rootkits is of primary importance 
to avoid the uncontrolled operation of malware. Most of 
current techniques for rootkit detection only allow a late 
detection after the malware has already been hidden by a 
rootkit. In this paper, a new technique is presented that 
enables the proactive detection of rootkits while they are 
hiding malware, and therefore, allowing that hiding can be 
avoided. The technique has been designed for rootkits that 
operate in kernel-mode. This rootkits are particularly difficult 
to detect because both the detector and the rootkit are executed 
with the same privileges. This technique can be used to 
improve the detection capabilities of intrusion detection and 
prevention systems. 
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I.  INTRODUCTION 

Rootkits, or more generically stealth malware, are 
software components used to hide objects inside a computer 
system. Generally, the objects hidden by rootkits are 
processes and files. 

 The nature of rootkit operation implies that they are 
usually detected by crossview detection. This kind of 
detection method cross checks the information obtained from 
a raw object enumeration with the vision that a program 
using the operating system API would get. This implies solid 
knowledge of the functionality of the operating system and 
its data structures. This technique detects the presence of 
rootkits into the system but does not stop them from 
operating. In addition, the time period in which the malware 
has executed its actions is undetermined. 

This paper presents a new technique that allows the 
detection of a particular modification in data or code of the 
operating system. The paper focuses on Windows NT family 
over Intel architecture, although the same ideas are 
applicable to UNIX systems and even to other processor 
architectures if they operate with paged memory. 

II. TECHNOLOGICAL BACKGROUND 

One of the latest technologies used for malware aid is 
rootkit technology. The rootkits hide system objects such as 

files, processes, drivers, registry keys, etc., which are 
generally related to a malware element. 

Originally, rootkits were understood to be toolkits that 
allowed an attacker to subvert an UNIX system and 
maintain root privileges over it without being detected by 
the system administrator. On UNIX systems, after a 
successful exploitation of a bug which allowed the attacker 
to obtain root privileges, the attacker usually made use of 
this kind of tools. They allowed him to hide the processes or 
TCP channels so he could continue making use of the 
attacked computer. These tools were trojanized versions of 
the original programs installed in the system. For example, 
the toolkit could include a version of the ps program which 
omitted the processes the attacker uses to his own 
benefit [1]. 

However, there have been recent changes in the malware 
scenario. Current stealth software presents a more technical 
profile so the definition must be expanded to include code 
that executes information hiding tasks in a compromised 
system [2]. Thus, the current definition of a rootkit is any 
software that gives continued privileged access to a 
computer while actively hiding its presence and other 
information from administrators by subverting standard 
operating system functionality or other applications. 

Currently, the complexity achieved by both malware and 
anti-malware software is very significant. This can be seen 
in [3] for PCI rootkits, in [4] for SMM rootkits, in [5] for 
MBR rootkits, and in [6] for rootkits that manipulates the 
memory page tables of the processor. 

We must distinguish between the rootkit and a possible 
associated malware element which is hidden by the rootkit. 
Rootkit technology, as we understand it nowadays, is not 
malicious in itself, but generally its application is. However, 
the hidden object can be the rootkit itself, which probably 
implies some kind of malware rootkit. 

Rootkits are mainly  classified in terms of their 
execution mode on the processor [7], [8]. Those modes are: 

• User mode: The rootkit usually affects a single user 
process. If system wide hiding is desired, all the user 
mode processes in the system are subverted. To 
achieve its goals, the rootkit is loaded in the address 
space of the victim process. The mechanism used to 
infect the processes usually implies some kind of code 



injection (legal or illegal) and once the code is loaded, 
it hooks system API functions to perform its malicious 
actions.  The two main hooking techniques are: Import 
Address Table (IAT) deviation and detouring via code 
overwriting. The rootkit can also take the form of a 
trojanized binary module which executes additional 
actions to those expected by the user. 

• Kernel mode: The rootkit usually takes the form of a 
dynamic kernel module, which is loaded in the kernel 
memory. Once loaded, it can operate by detouring 
system calls (type 1) or modifying the data structures 
of the operating system directly (type 2) [9]. 

III. RELATED WORK ON ROOTKIT DETECTION 

There are two main types of techniques for detecting a 
rootkit: those which detect the presence of the rootkit and 
those which detect the behavior of the rootkit. 

To detect the presence the rootkit, several elements in 
the system should be inspected. The rootkit must use the 
system resources so there may be inconsistencies that the 
rootkit does not take into account. A rootkit detector should 
inspect the following elements: 

• File system: The detector must look for a byte pattern 
that identifies a known rootkit (or malware in the most 
general case). This is the traditional antivirus 
approach. 

• System mechanisms that allow a binary module to be 
loaded into memory: Functions such as NtLoadDriver 
or NtOpenSection allow code to be loaded into 
memory. Unfortunately, there are a lot of functions 
which can be used to load code into memory [2], and 
there are also other methods like registry keys which 
can load modules into memory. These registry keys 
are process dependent, which further complicate the 
inspection. This technique follows a “protecting the 
gate” approach. 

• Virtual memory modules: A rootkit detector can walk 
through the list of modules loaded into memory in 
order to find a byte pattern which identifies a rootkit 
[10]. This approach is the same as the detection 
technique in a file system, but applied to memory 
modules. 

• Hooks: A type 1 rootkit must modify somehow the 
execution flow of system code. This approach is used 
in the anti-rootkit VICE system introduced in [11] and 
in its evolution RAIDE, introduced in [12]. Typical 
elements to inspect are: 

• IAT (Import Address Table) 
• SSDT (System Service Dispatch Table) 
• IDT (Interrupt Descriptor Table) 
• Drivers’ I/O Request Packet (IRP) handler 
• Inline hooks. 

• Tracing execution: This is another technique to look 
for hooks in the system. It is presented in [13]. The 

idea is to instrument a clean system to obtain the 
number of instructions that a given code path should 
execute. The premise is that hooks will increment the 
number of instructions executed for a given code path. 
This technique is questionable as the same code path 
executes a different number of instructions depending 
on different factors. Although in [13] is affirmed that 
the difference is appreciable for known rootkits, this 
could depend upon the sophistication of the attack. 

The main disadvantage of all the techniques based on 
presence detection is that as new attack techniques are 
developed, the detection process must protect more 
elements that the rootkit could use to its benefit. 

To detect rootkit behavior, the main technique is 
crossview detection [14]. This technique compares a set of 
objects obtained by a high level process with a raw 
enumeration, performed almost at hardware level. Any 
differences imply that there is a rootkit in the system. The 
main disadvantage of this technique is that, although 
evidence of intrusion in the system is detected, neither the 
rootkit nor its associated malware are identified. One 
advanced antirootkit system using this technique is Strider 
GhostBuster developed by Microsoft Research and 
introduced in [15]. 

There are also other complex techniques that are focused 
on the detection of the hooking process [16]. 

It is important to notice that none of the aforementioned 
techniques prevent the installation of the rootkit in the 
system. They only allow detection at a later stage when the 
rootkit is already installed in the system. 

However, one of the newest antimalware defenses 
consists in components that anticipate the presence and 
operation of user-mode malware. They generally do so by 
monitoring user processes from kernel modules and 
observing their behavior. Then, they can infer if the 
observed behavior is suspicious and act consequently. These 
techniques can work because of the different protection 
levels of execution modes in Intel processors. User-mode 
processes always run in a less privileged mode than the 
kernel. This way, the kernel can monitor and modify user-
mode processes if it is required. 

But when malware executes in kernel-mode, the 
privileges of malware and operating system are the same. 
Kernel-mode antiviral modules have no privileges over 
kernel-mode malware modules, so malware cannot be 
monitored and the required information to detect malicious 
behavior dynamically cannot be collected. 

In fact, current detection techniques for kernel-mode 
rootkits are the already explained ones. The most important 
problem they suffer is that the detection cannot be 
anticipated, and rootkits can only be detected at a later stage, 
when they have already been operating for an undetermined 
time. It would be very interesting if rootkit operation could 
be monitored in real-time so an antimalware engine could 
not only detect but even prevent the rootkit actions. The new 
technique presented in this paper achieves this goal. 



IV. THE NEW TECHNIQUE FOR ROOTKIT DETECTION 

This paper proposes a new technique to detect any 
software module (rootkit) which patches the System Service 
Description Table (SSDT) or manipulates the process list in 
Windows systems in order to hide processes. This technique 
is based on gaining execution at the moment that the code or 
data of the operating system is being patched (modified). 
This is achieved by hooking the page fault handler in the 
Interrupt Descriptor Table (IDT), and then, manipulating the 
kernel page tables to set the memory pages to be monitored 
as "not-present". 

In this way, the page where the SSDT resides can be 
hidden and write accesses over it can be detected. In case of 
a writing trial to the SSDT, the module responsible for the 
modification can be identified analyzing the stack. The 
identity of the responsible module can be used to decide 
whether to allow or deny the modification. This is important 
as the technique of SSDT detouring is also used by legal 
software such as any antivirus. 

The same concept can be applied for monitoring accesses 
to the process list. In this particular case another problem 
arises because the nodes of the process list are obtained from 
a non-paged memory pool in a dynamic fashion. Therefore, a 
technique to hook system memory allocations is used. Then, 
when a node of the process list is allocated, the memory 
allocated is detoured to a controlled memory page which can 
be monitored. In this manner, the allocation and deallocation 
of nodes of the process list can be controlled. Once allocated 
to a controlled memory page, it is possible to detect when the 
pointers to the nodes of the process list are manipulated. 
Once again, stack walk is used to determine which module is 
deleting the node. If it is not the operating system itself, it is 
probably due to an attempt to hide the process. 

There are three major components involved in the 
proposed mechanism: 

 The IDT hook and page fault handler. 
 The memory allocation and deallocation handler. 
 The finder of the memory writer modules. 
Each component is examined in depth in the following 

sections. 

A. The IDT hook and the page fault handler 

To control the page fault handling mechanism, the code 
responsible for resolving page faults must be hooked. The 
best way to do this is modifying the 0x0E entry (page fault 
exception) in the IDT. Firstly, the IDT address must be 
located executing the SIDT instruction. There is an IDT per 
processor. Once located in the IDT, the page fault handler 
entry is overwritten with our own handler, and the 
overwritten entry corresponding to the system page fault 
handler is saved. A debug trap handler (0x01 exception) 
must also be installed in order to restore the presence-bit 
state of the pages monitored in order that they can continue 
being monitored. 

One often subverted Windows structure is the SSDT. The 
SSDT is used to resolve API system calls [2]. It contains a 
pointer to an array of function pointers (denominated 
services array) and its length, among other information. 

Every user-mode system function has an index in this array 
of function pointers. In this way, when a system function is 
invoked, the kernel uses this table with the appropriate index 
and transfers the execution flow to the function responsible 
for serving the call. Remind that there are two important 
elements: the SSDT and the services array. 

Once our handlers are installed, the presence bit of 
almost any memory page can be turned off and the accesses 
to memory pages are monitored, in particular to the page 
where the SSDT resides. The monitoring process is shown in 
figure 1. In the left column shows the software modules 
involved on a purple background. On the right, are the 
memory pages accessed by the modules on an orange 
background. 

The following points describe the monitoring process. 
The point numbers correspond to the numbers in the circles 
of figure 1. 

(1) A rootkit tries to hook a function of the operating 
system denominated NtOriginalFunction. It performs the 
hooking  by overwriting the entry of SSDT table at the 
0xXXXXX0FF address, which is where the pointer to 
NtOriginalFunction resides in the services array of the 
SSDT. 

(2) The rootkit tries to write on the memory page 
containing the services array. This page is being monitored, 
and therefore, it appears as not present in the physical 
memory because its presence-bit has been set to 0 in its entry 
of the page table. 

(3) The system triggers a page fault trap which invokes 
the page fault handler. As our page fault handler was 
installed previously, it gains execution. Then, our page fault 
handler determines if the faulting address belongs to a 
monitored memory page. In this case, it looks for the code 
that tries to access the page, presumably belonging to a 
rootkit module. 

(4) Our page fault handler sets the presence bit of the 
offending page to 1, making it visible for further memory 
accesses. 

(5) Our page fault handler also changes the trap flag of 
the thread that is executing the rootkit code. This forces to 
run the rootkit code in debug mode, triggering a debug 
exception after the execution of each instruction. 

(6) When our page fault handler has finished, the 
offending instruction is re-executed successfully. 

(7) As the instruction execution was successful, the 
0xXXXXX0FF address is written with the address of the 
rootkit function. Thus, the rootkit has effectively hooked the 
NtOriginalFunction of the system. 

(8) As our page fault handler has put the thread executing 
the rootkit code in debug mode, just after the execution of 
each instruction a debug trap is executed, and our handler 
gains execution again. 

(9) Our debug trap handler restores the data if this is the 
desired action. Remember that the offending code has been 
identified as belonging to a rootkit module. 

(10) Next, our debug trap handler hides the page again by 
setting its presence bit to 0. 

(11) Finally, our debug trap handler deactivates the 
debug mode in the offending thread. 



•Is it a trap we provoked?       YES
•Should we undo the change  YES
•Ok, do the following:

•Rewrite the original data
•Set the presence bit to 0
•Unset the trap flag in the rootkit thread

Our Debug Trap Handler

•Is it a page we monitor? YES
•Is it a write access?         YES
•Look for the module trying to perform the      

writing  Rootkit Module
•Ok, do the following:

•Set the presence bit to 1
•Change the rootkit thread flags to launch 

an int 0x01
•Record the change to undo it

Our Page Fault Handler

Rootkit Code EFLAGS – Trap Flag = 0

EFLAGS – Trap Flag = 1

…
0xXXXXX0FC: NtOneFunction
0xXXXXX100:  NtOriginalFunction
0xXXXXX104: NtAnotherFunction
…

Page Table Entry – Presence Bit = 0

…
0xXXXXX0FC: NtOneFunction
0xXXXXX100: RootkitFunction
0xXXXXX104: NtAnotherFunction
…

Page Table Entry – Presence Bit = 1

…
0xXXXXX0FC: NtOneFunction
0xXXXXX100: NtOriginalFunction
0xXXXXX104: NtAnotherFunction
…

Page Table Entry – Presence Bit = 0

5

mov edi, edi
push ebp
mov ebp, esp
...
mov ecx, [0xXXXXX0FF]      ;Save NtFunction
mov [NtOriginalFunction], ecx
mov eax, [RootkitFunction] ;Install Rootkit
mov [0xXXXXX0FF], eax
...
pop ebp
ret
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Fig 1. Page Monitoring Technique 

 

B. The memory allocation and deallocation handler 

One technique to hide processes in Windows is by 
manipulating the process list directly. This is an example of 
Direct Kernel Object Manipulation (DKOM), also known as 
type 2 malware. 

Windows processes are represented by a record called 
EPROCESS. If the EPROCESS records are in a page which 
can be monitored, accesses to EPROCESS records can be 
detected and the hiding of a process can be monitored. 
Figure 2 shows the technique to allocate EPROCESS records 
in monitored pages. The upper area shows the execution path 
followed when the system is allocating memory. The lower 
area shows the memory given to the system in two cases: 
allocating an EPROCESS and another memory. 

The following points describe this technique. The point 
numbers correspond to the numbers in circles in figure 2. 

(1) The operating system creates a new process and 
allocates memory for the new EPROCESS record. 

(2) The memory allocation function has been hooked in 
order to inspect every memory allocation in the system. 

(3) If memory is not allocated for a new EPROCESS, 
the execution is returned to the original function. 

(4) In this case, the original function finishes its 
execution by giving a block of memory to the calling code 
which is then allocated in a system page. 

(5) On the other hand, if the memory allocation is for an 
EPROCESS (which can be seen in the “tag” parameter), a 
previously allocated page which can be monitored is used to 
host the EPROCESS record. 

With this technique, accesses to the linking fields in an 
EPROCESS record as well as the behavior shown in figure 2 
can be monitored. A complementary mechanism has been 
developed for memory deallocation, because when the 
system deletes an EPROCESS, the execution flow must be 
detoured to avoid a system inconsistency. 

C. The finder of the memory writer modules 

Determining which module has generated a modification 
is as important as the modification itself. The operation of 
the finder is shown in figure 3. The left part shows the stack 
of the thread performing the write operation. The stack 
grows from bottom to top in figure 3 towards low addresses. 
The right part shows the modules (addresses and their 
content). The CR2 register of an Intel processor contains the 
address of the instruction that provoked a page fault. 



; mov edi, edi ; Original
; push ebp ; Code
;mov ebp, esp ; Sequence
jmp [OurExallocatePoolWithTag]

Continue_ExAllocatePoolWithTag:
…
; Allocate memory
…
mov eax, [AllocatedMemory]
pop ebp
ret 12

ExAllocatePoolWithTag

…
; Allocate an executive structure for a
;process
; ‘Pro.’
push 0xE36F7250 
;sizeof(EPROCESS)
push 0x000001F8
; POOL_TYPE = NonPagedPool
push 0
call [ExAllocatePoolWithTag]
mov [NewEPROCESS], eax
…

Windows Process Creation

if (! EPROCESS allocation)
{

Prepare the execution context and …
jmp [Continue_ExAllocatePoolWithTag]

}
else  //EPROCESS Allocation
{

//Assign a new page from our pool
//to the new EPROCESS
mov eax, [NewEPROCESS]
pop ebp
ret 12

}

OurExAllocatePoolWithTag

System Page

Allocated Memory

Monitored Page

New EPROCESS

Next

Back

2

5
1

3

4

Code Path

Our Served Memory Path

System Served Memory Path

 
Fig 2. Memory Allocation Handler in action 

 
 
In the first scenario, the exception record placed in the 

stack, in a green box in figure 3, shows that the write access 
on a monitored page was originated by the rootkit module. 

In fact, the finder can obtain the exact address where the 
write access is performed. In this scenario is straightforward 
determine the responsible module of the modification, 
because, as figure 3 shows, the finder can infer the writer 
module directly from the faulting EIP stored in the stack, as 
this virtual address belongs to the rootkit module. 

In the second scenario, find the writer module is a little 
more complicated. The write access is performed by a helper 
function located in NtosKrnl module. This function is called 
by the rootkit code and performs an atomic write on the 
memory address indicated by its first parameter with the 
value of the second parameter. 

By examining only the exception record, surrounded by a 
green box in figure 3, the finder would suppose that the 
modification was originated by the kernel itself. But this is 
not correct, because the real responsible of the write access is 
the rootkit that called the helper system function. 

So the finder must analyze the stack in order to find the 
true writer module. As the rootkit code performed a function 
call, the stack must contain an activation record 
corresponding to this call. Figure 3 shows the activation 
record surrounded by a blue box, which has the two 
parameters passed to the function, the return address and 

locals. Using that return address, which belongs to the 
address range of the rootkit module, the finder can infer that 
the module which performed the memory write was, in fact, 
the rootkit module. 

V. EVALUATION OF THE TECHNIQUE 

The evaluation of the proposed technique was based on 
black-box testing. The evaluation method consisted of 
installing a kernel module containing the implementation of 
the proposed technique, and then executing several software 
which is known to hook Windows SSDT and hide processes 
manipulating the process list. The software used in the test 
was primarily malware and antivirus. The tests were 
performed in a Windows XP with Service Pack 2 running on 
an Intel IA-32 machine with 1GB of RAM. 

The SSDT hooking tests have shown, without prior 
knowledge, that Karspersky Antivirus hooks almost all 
SSDT functions, and also that rootkits usually hook five or 
six system functions, all of them directly related with its 
purpose, such as NtEnumProcesses. 

Other successful test was the monitoring of an encrypted 
rootkit (Mitglieder.OM). The application of reverse 
engineering to this rootkit in order to determine the system 
function that it modifies is extremely difficult. But once the 
rootkit was running, the proposed technique discovered the 
SSDT functions hooked by this rootkit. 



CR2 = [NtOriginalFunction]

Stack
Rootkit Module

NtosKrnl Module

...
; Perform the write
0x804d8025: lock cmpxchg [param1], param2
0x804d8029: jne 0x804d8025
…

InterlockedExchange

...
; Perform Rootkit behavior
…

RootkitFunction

0xff340c4a: mov eax, [RootkitFunction]
0xff340c50: mov [NtOriginalFunction], eax

Scenario 1

0xff340c50: call InterlockedExchange      
([NtOriginalFunction], RootkitFunction)

0xff340c55: …

Scenario 2

0xffc00ab4: Error Code (Mostly 0x00000003)
0xffc00ab8: EIP (0xff34c050  Inside Rootkit Module)
0xffc00abc: CS
0xffc00ac0: EFLAGS
0xffc00ac4: … (Locals)
0xffc00ac8: … (Locals)
0xffc00acc: 0xffc00ae0 (EBP)
0xffc00acd: …

Scenario 1 – Top of Stack (ESP) = 0xffc00ab4

0xffc00aa0: Error Code (Mostly 0x00000003)
0xffc00aa4: EIP (0x804d8025  Inside NtosKrnl)
0xffc00aa8: CS
0xffc00aac: EFLAGS
0xffc00ab0: … (Locals of InterlockedExchange)
0xffc00ab4: 0xffc00acc (EBP)
0xffc00ab8: 0xff340c55
0xffc00abc: [NtOriginalFunction]
0xffc00ac0: RootkitFunction
0xffc00ac4: … (Locals)
0xffc00ac8: … (Locals)
0xffc00acc: 0xffc00ae0 (Older EBP)
0xffc00ad0: …

Scenario 2 – Top of Stack (ESP) = 0xffc00aa0

 
Fig 3. Analysis of the stack to find the memory writer module 

 
In the case of processes hiding, the test used the proof-of-

concept “Fu” rootkit for hiding processes which uses the 
aforementioned technique involving process unlinking, 
verifying that the process hiding trial is detected and that the 
module responsible is correctly identified. 

To further validate the obtained results, the tests should 
be performed on additional platforms, primarily different 
operating system versions with different customizations, 
service packs and hardware. 

VI. CONCLUSIONS AND FUTURE WORK 

A new technique to detect modifications on parts of the 
operating system kernel has been developed. It has been 
applied it to monitor the parts most often modified by kernel-
mode rootkits and its usefulness has been verified. This 
technique detects patching trials of the operating system by 
unknown modules on the fly. 

There are various ways to evade our technique, for 
example, modifying the IDT page fault entry again, thus 
disabling the mechanism. Furthermore, the page containing 
the IDT cannot be protected by our technique as it must be a 
present page in memory to avoid a processor triple fault. 

Future work includes extending the technique to handle 
different paging schemas such as large pages. Also, a more 
robust mechanism to analyze the stack, probably based on 
frame walk using the EBP processor register, should be 
developed. 
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