
Rootkits Survey

A concealment story

Pablo Bravo, Daniel F. García

Department of Informatics

University of Oviedo

Oviedo, Spain

{UO139758, dfgarcia}@uniovi.es

Abstract—Computer security is an old problem, as old as

computers themselves. The evolution of computer threats has

also experienced an exponential complexity development, being

the last example of that evolution the malware categorized as

rootkits or stealth malware. A rootkit is code that is used by an

attacker to keep the legitimate users and administrators of a

system unaware of the code, and thus the attacker’s presence

on the compromised system. This paper will discuss the history

of rootkits from the basic modification of system binaries to the

cutting edge research being develop today. A discussion of each

type of rootkit will be followed by an overview of rootkit

detection techniques and how to know when a rootkit has been

deployed. Finally new techniques and research directions will

be discussed.

Malware; Rootkits; Stealth software; Hooking; Binary

patching

I. INTRODUCTION

The term “rootkit” has evolved over time, from early
*NIX toolsets used to attack mainframes to computer worms
like Stuxnet [1].

The best way to understand what the term rootkit means
is by looking at the role it plays in the phases of a computer
attack. Generally, successful targeted computer attacks
involve two phases (obviating a prephase of achieving the
necessary information to be able to reach the desired
machine or network): breaking into the machine (or
“rooting” it) and maintain continued access to it in order to
perform the supposedly malicious actions with or over it.

Is in this second phase of the attack where the rootkit
comes into play. A really successful attack, if not properly
concealed, would be ineffective in a short period of time,
generally until the system administrator notices the
penetration. Of course there are kinds of attack that can
accomplish its objectives without the need to conceal its
actions, but except for those scenarios (such as information
stealing without the need to conceal the fact that the
information has been stolen, or denial of service attacks,
which doesn’t have even the need of rooting the machine
under attack), concealing the attack is as important as
penetrating the target.

Initially, the term rootkit referred to a tool or suite of
tools used to maintain administrative level access on a
compromised system. Something as simple as a modified

configuration file or binary could be used to allow an
attacker uncontrolled access to a target machine for an
indeterminate amount of time. The techniques that rootkit
authors employ have evolved with computing systems and
networks. What began as user-land modified UNIX binaries
[27][3][4] has changed over time to kernel-mode code that
use complex features of the microprocessors and subvert
even the operating system to achieve its goals. They can
even be deployed in the form of hypervisors in
virtualization-enabled systems to control the operating
system itself [2].

In this paper, we will understand a rootkit as any
software that enables continued privileged access to a
computer while actively hiding its presence and other
information from administrators by subverting standard
operating system functionality or other applications.
Although the definition involves the concept of machine
control, the main contribution of a rootkit to its goals is the
idea of operation concealment, and this is part of its
operation what is generally understood when talking about
rootkits [27][28]. Therefore only the techniques which allow
the concealment of the rootkit will be presented. Also, when
talking about rootkits, we could distinguish between the
rootkit itself and an associated piece of software (possibly
malicious) which the rootkit would hide. We won’t make
this distinction and will use the term rootkit interchangeably,
meaning both the rootkit only used for the concealment of
other piece of software or a malicious software with rootkit
capabilities.

II. ORIGINS

Rootkits, in the form of stealth functionality within
software, have been in existence since at least 1988. The first
notable piece of stealth code was the Brain virus [36]. This
virus affected the boot sector of storage media formatted
with the DOS File Allocation Table (FAT) system. What
makes this virus interesting with regards to rootkit or stealth
technologies is that this virus was the first one in existence to
include code created to hide the virus from detection. The
virus changed the boot sector of floppy disks to spread itself,
but it hooked INT 13 so when an attempt of reading the boot
sector was made, the virus would present the original one
[33]. This means everything looked correct, but in fact there
were an ongoing infection in the machine.

The next step were *NIX machines. In an (successful)
attempt of obtaining remote root level access, system
binaries were substituted by modified versions which
performed as the original with subtle changes. Access was
maintained by installing backdoors in net-aware applications
such as telnet or ftp daemons. Especial programs could be
run without noticing thanks to a patched version of ps, and
logs were modified (or even not produced) by those modified
versions of the system binaries. However, this way of attack
was easily defeatable, as a simple checksum would do.

The next phase for rootkit attacks was the operating
system kernel. This allowed similar results, but is far more
difficult to detect. So rootkits started being deployed as
kernel modules. This way, rootkits had unrestricted access to
the system and they could easily subvert it. The detection of
kernel-mode rootkits was not easy and detection software
had to be heavily redesigned. And once opened this
alternative, rootkit war became a how-deep-you-can-go
game. The nearer to the hardware, the more difficult to
detect. So research directions went through very specialized
software such as rootkits that used System Management
Mode (SMM), firmware rootkits, BIOS rootkits, Master
Boot Record (MBR) rootkits and when virtualization
technology came into play, virtualization rootkits.

Right now, with the rise of mobile technology and the
fact that some of these mobile platforms use virtual machine
technologies such as Java or .NET, there is renewed interest
in the so-called managed-code rootkits.

III. CLASSIFICATION

There are different criteria to classify rootkits. The main
ones are:

 Operation layer of the rootkit in the system
architecture [6][7].

 Stealth malware taxonomy by Rutkowska [5].

A. Classification based on layers

Computer systems can be described as a set of layers
where each one uses services provided by layers below it,
similarly to network protocols. Hardware would be the base
layer of the computer system, and typically, user programs
would fit in the top layer as shown in Fig. 1.

Figure 1. Computer System Layered Architecture.

Upper layers represent application software and lower
layers represent the operating system, hypervisor (if the
processor supports them) and hardware peripherals firmware
code. The lower the layer, the harder to write the software.

Note that this classification is a generalization of a
simpler one based on the operating mode of the processor
under which the rootkit operates. In this classification, both
application and library layer rootkits would be classified as
user-mode rootkits, whereas kernel layer rootkits would be
classified as kernel-mode rootkits. Usually, also
virtualization and firmware layer rootkits would get
classified as kernel-mode rootkits, as the processor must
operate in the most privileged mode for this kind of rootkits
to operate. As a side note, rootkits operating in SMM
(System Managed Mode) and Master Boot Record (MBR)
rootkits would also be classified as kernel-mode rootkits, and
could fit both in the virtualization layer and in the firmware
layer, as this kind of rootkits have characteristics of both
layers in common.

1) Application layer
These rootkits consist of recompiled binaries (or patched

ones) that replace the original user-mode system binaries and
operate in a malicious manner. Historically, these rootkits
have been also known as Trojans, although some authors
disagree [7].

2) Library layer
These rootkits are conceptually equal to rootkits

classified as application layer rootkits, except that they are
targeted to system-wide dynamic link libraries. This means
they are in fact altered versions of the original user-mode
system libraries. This way, they can affect the whole system
on a process basis, and thanks to dynamic linking, will affect
every new process. To explain this a little further, the
libraries which are the usual target of these rootkits are
loaded by (almost) every process running in the system.
These libraries usually control the communication between
the processes and the operating system services, so
subverting them is a good way to subvert the whole system.

Also, in this category, we would classify those rootkits
implemented as dynamic-link libraries that use alternate
methods to get loaded in every process, but does not need to
subvert original operating system libraries. This kind of
rootkits usually modifies the victim process data or code via
binary patching to be able to perform its behavior.

3) Kernel layer
Kernel layer rootkits are implemented by replacing or

writing new code directly into the running system kernel.
This goal is typically achieved by writing a device driver on
a Windows system or creating a Loadable Kernel Module
(LKM) on a Linux system [3].

When a user-mode process request information or a
resource from the operating system kernel, there is a specific
path of system calls that must take place. Hooking in any of
these places will result in the execution of rootkit code
instead of original system requested behavior. This way the
system is effectively subverted.

Technically, these rootkits could also replace the kernel
image with a recompiled (or patched) one, but this is rare and
very uncommon.

4) Virtualization layer
These kinds of rootkits are the most dangerous ones as

detection is theoretically impossible, although some author
suggest that the detection can be achieved by indirect means.
They are implemented as hypervisors and basically run in a
layer below the most privileged layer of execution, which is
where the operating system resides. These rootkits need the
existence of any virtualization technology in the processor
such as Intel VT-x or AMD-V. They can virtually make
everything they desire as they monitor every operation that
takes place in upper levels. As an example, the rootkit could
monitor, log, modify or even drop packets of a network
connection and the compromised system will not notice
anything.

5) Firmware layer
The general concept of firmware rootkits is that firmware

can be modified by privileged code, and firmware is a type
of code that sooner or later will be executed. This code also
has some interesting properties, as for example, it is
extremely difficult to write and to detect. Other advantage
for a rootkit is that it is located very near the real hardware
and can be used to subvert the system without the need to
subvert (almost) the operating system. Also, if the firmware
software targeted is the BIOS instead of a peripheral
firmware, and as this software is executed prior to any
operating system initialization, the rootkit potentially can do
anything as it could control every aspect in the system.

These kinds of rootkits are very difficult to remove, as
reinstallation of operating system, or reformatting the hard
disk, or even installing a new hard disk, will not dispose the
subversive code. The affected piece of hardware should be
replaced or returned to its original state to ensure rootkit
removal.

B. Stealth malware classification by

Rutkowska

The approach used in Rutkowska’s classification is based
in the concept of system compromise [5]. According to this
idea, there are four distinct types of malware, and each one
compromises the system security in different degrees.

It is important to note that Rutkowska’s classification is
not based in the common distinction of user versus kernel
mode.

1) Type 0 malware
This type of malware is not considered malware by

Rutkowska’s definition as it does not compromise the system
in any way. It interacts with the system in a documented
way, and it does not subvert the system in any way. It is
presented as a legal user-mode application. Of course, the
application could perform some behavior considered
malicious, as deleting all the documents in a user folder (this
would match the AV industry definition), but from a system

perspective, the application is legal. Fig. 2 represents
visually this kind of malware.

Figure 2. Type 0 malware

2) Type 1 malware
When system read-only resources, such as executable

code sections, constant data tables, BIOS code or PCI
expansion EEPROMS are modified by a rootkit in such a
way that the rootkit achieves its goal, the rootkit is classified
as type 1 malware. These rootkits performs their operation
by different kinds of hooking. Fig. 3 represents visually this
kind of malware.

Figure 3. Type 1 malware

3) Type 2 malware
As opposed to type 1 malware, type 2 malware does not

modify read-only resources, but instead does modify sections
which are by nature dynamic and are subject to be changed
by the operating system itself. Such sections can be dynamic
data structures which the rootkit modify in such a way that it
is able to achieve its goals. Fig. 4 represents visually this
kind of malware. Examples of this are DKOM (Direct
Kernel Object Manipulation) techniques [22].

Figure 4. Type 2 malware

4) Type 3 malware
Type 3 malware is the more dangerous malware as it

does not need to modify in any way a system to compromise
it. To work, this kind of rootkits needs some kind of
virtualization platform in the system. Fig. 5 represents this
malware.

Figure 5. Type 3 malware

The basic way to subvert the system by the rootkit
(which takes the form of a hypervisor) is performing its
behavior when the normal system operation is intercepted by
the virtualization technology.

IV. TECHNIQUES USED BY ROOTKITS

This section discusses how rootkits operate to achieve its
goals. Usually, the rootkit must be loaded in memory. In the
case of user-mode library rootkits, the dynamic library must
be loaded in the victim process address space. In the case of
kernel-mode rootkits, it must be loaded in the kernel address
space. There are a variety of techniques, some legal and
some illegal or based on some form of exploit. However,
techniques to achieve the rootkit loading in the desired
address space are beyond the scope of this paper. Rootkit
techniques, understood as a way to achieve rootkit behavior,

are based on some way of binary patching, both in user and
kernel mode.

A. Common hooking techniques

There are two basic ways of code detouring [26]:

 Table based detouring

 Inline code patching detouring

The idea behind table based detouring is that certain

pieces of code will invoke API functions resident in other
modules whose address is stored in a table, usually filled in
the linking process. By overwriting pointers in this table, a
rootkit can redirect functions to its own code. A visual
explanation can be found in Fig. 6:

Figure 6. Table hooking

The function table contains different function pointers
that are invoked indirectly. At address 0xAABBCCD4,
originally resides the function pointer to Function2, but the
rootkit installs its own function by overwriting this entry in
the table. When the code invokes Function2, it will in fact
invoke NewFunction2.

As table-based hooking is relatively easy to detect, the
other way of detouring code is by inline hooking. As its
name suggest, in-memory code will get patched so it will
execute whatever a rootkit writer desires. Although any kind
of patching is theoretically possible, the most common way
to do it is to overwrite the function prologues of the
functions that the rootkit is interested in. The new code
usually is some form of jump to a rootkit function, which can
return to the original function or directly to the calling code
depending on the desired behavior. A visual explanation can
be found in Fig. 7.

The FunctionX prologue is overwritten by the rootkit,
changing these instructions with a jump to rootkit detouring
code. The first thing that the detoured rootkit function must
do is to set the original stack frame. Later it can perform its
behavior and finally it can or cannot return to the original
function. In any case it must correctly balance the stack.

Figure 7. Inline hooking

B. User mode techniques

The tables that a library rootkit targets usually are the
Import Address Table (IAT) and the Export Address Table
(EAT) [27]. The IAT is the data structure within a PE file
where the operating system loader fills the addresses of
imported functions. The EAT is the table where a module
reports its exported functions. This table can also be
overwritten by library rootkits, although not very usual, as it
will be of use only in case there were new dynamic modules
loaded in the process address space. In that case, the new
loaded module would obtain the addresses the rootkit
overwrote in the EATs when the loader fills its IAT.

Other technique that user-mode rootkits frequently use is
inline hooking. This technique achieves the same effect as
table hooking, but makes a bit more involved the detection of
the hook. Notice that in a table hook, the address of the
imported function points into the rootkit module instead of
the original one. With inline hooking, all table pointers are
correct, but when the API function is invoked, it will jump to
the rootkit function.

Anyway, inline hooks are not especially difficult to
detect, as a checksum of the code section that takes into
account the relocation addresses would be enough to detect
the hook. Other detection way is disassembling the prologue
of the functions that are suspect of being hooked, but
although inline hooking takes place generally at the
beginning of the function, nothing prevent an inline hook
inside a function, which makes detection quite more difficult.
In this case, inline hooking detection could be accomplished
by static analysis.

C. Kernel mode techniques

Kernel-mode techniques can be classified in two main
types coinciding with Rutkowska’s classification: type 1 and
type 2 techniques.

Type 1 techniques are in essence the same as presented in
user-mode techniques. The main difference is that the rootkit
driver can hook in many places. Fig. 8 represents the code
path for serving a particular service call [26].

Figure 8. Windows service call path

When an application invokes a system service, it

generates a 0x2E interrupt. This value is used to index a
processor table denominated Interrupt Descriptor Table
(IDT). The processor basically generates a jump to the code
function address in the IDT entry. This function is
KiSystemService which in turn indexes a table denominated
System Service Dispatch Table (SSDT). This SSDT table
contains the addresses of the services exported by the kernel.
The index used in the SSDT comes in the form of a
parameter passed from the application. Alternatively, in
modern processors, the mechanism is basically the same, but
based in the SYSENTER instruction, which performs the
transition between user and kernel mode. This instruction
uses some processor Model Specific Registers (MSRs)
which perform a call to a function denominated
KiFastCallEntry. This function in turn invokes
KiSystemService to service the call.

1) Type 1 Techniques
The techniques used by type 1 rootkits are the exposed

before: table hooking and inline hooking. But as can be seen
in Fig. 8, there are a lot more places to hook:

 IDT: The Interrupt Descriptor Table is a data structure
used by Intel processors to route the interrupts that take
place in the system. In older systems, interrupts are the
preferred portable way to invoke operating system
services. The operating system reserves an interrupt
number to this task. In Linux Systems, the assigned
interrupt is 0x80, while in Windows Systems it is the

0x2E. A rootkit can hijack this interrupt to route the
petition of a generic system service to itself. This is not
very popular as it involves a lot of work for the rootkit
as it must route every function in the system, even those
it is not interested in, basically substituting the operating
systems routing mechanism [23].

 SYSENTER: The SYSENTER instruction is the new
path into kernel-mode in newer processors. It is
logically equivalent to the interrupt mechanism,
although it is implemented in a different way. From the
technical point of view, it consults certain processor
MSRs and requires the Global Descriptor Table (GDT)
to have certain layout. The MSRs contains the kernel
memory descriptor, and the EIP of the code to be
invoked. A rootkit could detour the path into kernel-
mode by writing into the 0x176 MSR (containing the
EIP). This technique is logically equivalent to the IDT
detouring one.

 SSDT: The System Service Descriptor Table is
Windows specific data structure which routes system
calls to the functions that serves them. It is a system
wide table, which makes it very attractive to rootkits, as
simple table hooking allows the rootkit to affect the
whole system. The main disadvantage is that hooking
this table is easily detected (if virtual memory hiding
techniques [23] are not involved).

 IRP Dispatch Table: The living of a system call does
not end when a servicing function in the kernel gets
invoked by the SSDT. Depending on the service, it
could require the system to communicate with a
peripheral. If this is the case, the system will issue an
Interrupt Request Packet (IRP) that will travel through
the stack of drivers. A visual representation can be seen
in Fig. 9 and Fig. 10. The IRP travels through a stack of
drivers, each one servicing a different aspect of the
request. For example, in the case of a file read, drivers
near the top of the stack are the file system drivers,
while lower drivers communicate physically with the
disk itself. This situation will happen also if a peripheral
issues an interrupt. An IRP contains the particular
request of the service being invoked, and is filled
through its travel with additional data by the drivers
encountered in the corresponding stack. A driver
contains a table of functions which responds to petitions
made by the operating system in certain situations.
Obviously, these functions can be detoured by a rootkit
to achieve its behavior.

Figure 9. Windows API call serviced by a driver

Figure 10. IRP traverse through driver stack

2) Type 2 Techniques
The basic idea behind type 2 techniques is the

manipulation of operating system data structures. This way,
the rootkit does not need to modify the operating system in
any way, as it will operate in a normal way. The difference is
in the data that the operating system handles, and, if data is
missing, the operating system cannot retrieve it. There are
lots of operating system data structures that can be modified,
but a very common target that will serve as example is the
process list.

Windows systems save the active processes in the system
in a doubly-linked list. A rootkit could modify pointers in
this list to hide effectively a process. A visual representation
can be seen in Fig. 11.

Figure 11. Processes list manipulation

A hypothetical rootkit could manipulate pointers in the
EPROCESS A and EPROCESS C data structures to hide the
presence of EPROCESS B. The operating system would not
notice the existence of process B because it would be found
when traversing the EPROCESS list.

3) Filter drivers
One of the common extensions supported in the I/O

model of Windows Systems, is the concept of filter driver.
These drivers are conventional drivers installed in the stack
of drivers which can control the flow of IRPs. This means
that this type of drivers are basically observers of IRPs that
can alter the content of those IRPs and the call flow of the
requests across the stack of drivers allowing or denying the
IRP to progress.

Initially, these drivers where used on top of file system
drivers in order to implement antiviral functionality. Today,
a rootkit could install itself as a filter driver and control, for
example, the access to its own binary image on disk, making
it effectively invisible.

4) SMM Rootkits
One idea in rootkit research and development is always

try to obtain any kind of advantage over the target software.
This lead to the exploring of different alternatives such as
using even more privileged processor modes. Software
operating in System Management Mode (SMM) has by
definition more privilege than the software operating in ring
0 in processor protected mode. Thus it is a good mode to
execute a rootkit as it can subvert the operating system in an
almost impossible to detect fashion. Further details on this
technique can be found in [15][16][17].

5) MBR Rootkits
Master Boot Record rootkits are those which overwrite

the system’s MBR in order to gain execution before the
operating system is loaded in memory, in order to subvert it
[18]. Generally, these rootkits operate by hooking the INT
13h (which controls the BIOS access to disk) and control
when the operating system image is loaded, and overwrite
certain elements in the aforementioned operating system
image. The real rootkit module usually is a normal operating
system citizen (eg. a driver), but the deployment and
installation process uses the MBR to allow the rootkit to be
loaded in a very stealthy way [19].

6) ACPI and PCI Rootkits
In the race of getting unnoticed and lower-level, proof of

concept rootkits have been developed which target ACPI
(Advanced Configuration Power Interface) and PCI
(Peripheral Component Interconnect) BIOSes.

This kind of rootkits are particularly dangerous, as the
lower the rootkit is installed, the more difficult both to detect
and to correctly erase it. These rootkits can even be written
in other language than x86 assembler, as they target the
BIOS of different expansion cards, which can use other type
of processors. Nonetheless, they can correctly interface with
the operating system, as AML (ACPI Machine Language), in

the case of ACPI rootkits, is a high level language that
allows interacting with system memory and I/O space [14].
The same holds true in case of PCI rootkits [13].

7) Virtual Machine-based Rootkits
These rootkits exists in two flavors: software based and

hardware based.
 Software virtual machine based rootkits generally

operate by modifying the boot sequence and execute the
operating system into some kind of virtual machine such as
VirtualPC [9].

On the other hand, Hardware Virtual Machine (HVM)
rootkits use new virtualization technologies such as AMD-V
(Pacifica) or Intel VT-x (VanDerPool), which have
introduced a new layer of execution (aka Ring -1) that can be
subverted and exploited [10].

The main idea is that these rootkits are executed as
hypervisor in the target machine, effectively monitoring the
execution of the whole system. As those technologies are
prepared for executing virtual machines, they provide full
virtualization, and that makes impossible to detect directly
the existence of a hypervisor from a virtual machine. This
feature would make the rootkit truly undetectable [11] [38].

Also, these rootkits could install themselves on the fly,
and move the system to a virtual machine without the
operating system notice, making them a very dangerous kind
of rootkits [12] [34].

D. Rootkit techniques overview

An overview of the rootkits most found in the wild and
the techniques they use is presented in Table I.

TABLE I
ROOTKIT TECHNIQUES

 User Kernel
Malware IAT Inline SSDT DKOM Filter Memory IRP Nº

NTillusion X 0
BootRootkit X 0
ShadowWalker X X 0
Vanquish X 1
DigitalNames X 1
Sony F4I X X 1
WinKRootkit X 1
PWS-Gogo X 2
PigSearch X X 5
CommonName X 7
ISearch X 8
ALI X 9
He4Hook X 9
FU X 10
CoolWeb X 11
Maddis X 15
AFX X 40
PWS-Progent X 48
Mailbot.c X 48
Qoolaid X 58
Vanti X X 60
EliteBar X X 77
PWS-Goldun X 223
HackerDefender X 304
BAC X X 394
Feebs X 556
CKB X 707

Frequency 3 10 12 4 3 1 1 2595

The last column shows the number of variants existing
since 2003. Previous columns represent the techniques
categorized in user and kernel modes. Finally, the last line
shows the frequency of the technique found in the listed
rootkits. Preferred techniques in kernel mode are SSDT
hooking and DKOM process hiding, while inline hooking is
the most used approach in user mode. The data was extracted
from [24].

V. ROOTKIT DETECTION TECHNIQUES

Current rootkit detection techniques are:

 Behavioral detection

 Integrity checking

 Signature based detection

 Difference based detection

A. Behavioral detection

The base of the behavioral detection is trying to measure
the effects that a rootkit might cause in a system. This means
it could theoretically detect previously unknown rootkits.

In this field, there are two main streams:

 Detecting diverted execution paths: involves
detecting deviations in executed instructions [37]
and detecting hooks [29][31] [32][35].

 Detecting alterations in the number, order and
frequency of system calls [30].

These techniques may suffer from a high false positive

rate, as it is difficult in a production system to correctly
measure certain of the needed characteristics. For example,
the same system call could execute a different path due to the
particular system state. Also, although a hook seems always
illegal, legitimate software can also use hooks to implement
part of its functionality (in a very unsafe way). Even the
operating system installs hooks when patching parts of the
kernel.

B. Integrity checking

Integrity checking consists on detecting unauthorized
changes to system files or to loaded operating system
components in memory.

The operation mode of detectors implementing this
technique is as follows: initially they create a baseline
database of some kind of hash values. Later, and generally in
a periodic fashion, the detector calculates and compares the
hashes of the system being monitored against the initial
trusted database.

C. Signature based detection

This detection technique is the oldest of all, and has been
used to detect every type of malware since the first antivirus
scanner was released.

This technique searches memory or the file system for
unique byte patterns (known as signatures) that can be found
in the code of the rootkit.

This technique is highly accurate, but completely
ineffective against unknown rootkits or variants of a known
one, or even against obfuscated or packed code.

D. Difference based detection

The idea behind this detection technique is that if a
rootkit is present in a system, it is probably hiding
something. It is also known as crossview detection [8][31].

To detect a rootkit then, a detector should compare the
differences existing between a common system view and a
real system view. If differences appear between what the
common view shows and what is really going on in the
system (provided by the real view), then a rootkit is
operating in the system.

The principal problem of these detectors is obtaining
correctly the real view of the system. Ideally they should
relay only in its own code and directly access the hardware
to scan files, memory, registry entries and the like. On the
other hand, that is a daunting task and all detectors in this
category finally use the operating system in some way. This
is dangerous as if the rootkit is operating in the functionality
that the detector uses, the detector won’t catch the rootkit.

E. Rootkit detection techniques overview

An overview of the implementation of anti-rookit
techniques in the most current representative tools is
presented in Table II.

TABLE III

ANTI - ROOTKIT TECHNIQUES

Anti Rootkit
Tool

Hooking Heuristic Memory
scanning

Crossview Signature

ATool X
Avast! X X X X
AVZ X X X
CMC X X
ComboFix X X X
ESET X
F-Secure X X X X
GMER X X X
Helios X X
Hidden Finder X
Ice Sword X X X
K X-Ray X X X
Kernel
Detective

X X X

Kaspersky X X X X
Malware Bytes
Antimalware

 X X X X

Microsoft
Security
Essentials

 X X X X

McAffee X X
Panda X X X X
Rootkit
Revealer

 X

Rootkit
Unhooker

X X X

RootRepeal X X X
Sophos X
Spy Bot X X
Moosoft
Cleaner

 X X X

Trend X
VBA 32 X X X X
XeuTr X X X

Frequency 12 9 16 25 10

The columns referring to hooking and heuristic belong to
behavior based detection techniques, while memory scanning
belongs both to signature and integrity detection techniques.
The most used approach is crossview detection.
Surprinsingly, signature based detection is not among the
preferred approaches although every antivirus company
provides a rootkit detection tool within their products. More
information can be found at [25].

VI. RESEARCH

The future evolution of rootkits is determined by the
future platforms. In this sense, with the raise of software
virtual machine systems (Android, .NET), rootkits will
sooner or later target them [21].

Previous work [20] shows how managed code, as every
other software, can be subverted and should be of no surprise
the fact that malware is already spreading across systems that
use managed code, as for example, Android mobiles.

The term Managed Code Rootkit (MCR) is the general
denomination for this new type of rootkits. The principal
reasons why these rootkits result attractive to attackers is that
the attack surface is rapidly growing and they have a single
control point because they always target the underlying
virtual machine. Moreover, rootkit writers can port their
creations among different platforms without rewriting any
code [39]. An Android rootkit would work on every Android
mobile, as well as a .NET rootkit will work on any .NET
platform including desktop computers and Windows Phone 7
mobiles.

REFERENCES

[1] A. Matrosov, E. Rodionov, D. Harley and J. Malcho, “Stuxnet under
the microscope”, Technical Report of ESET, 2010.

[2] Symantec, “Windows Rootkit Overview”, Symantec White Paper,
2006.

[3] R. Siles, "Linux kernel rootkits: protecting the system’s ring-zero,"
White paper of SANS Institute, 2004.

[4] S. Manap, “Rootkit: Attacker undercover tools,” Personal
Communication, 2001.

[5] J. Rutkowska, “Introducing stealth malware taxonomy,” White paper
of COSEINC Advanced Malware Labs, 2006.

[6] A. Shah, "Analysis of rootkits: Attack approaches and detection
mechanisms," Technical Report of Georgia Institute of Technology,
2008.

[7] E. Skoudis and L. Zeltser, Malware: Fighting malicious code. Prentice
Hall, 2003.

[8] J. Rutkowska, "Thoughts about crossview based rootkit detection",
White paper of InvisibleThings, 2005.

[9] S. King et al., “SubVirt: Implementing malware with virtual
machines”, Proceedings from the IEEE Symposium on Security and
Privacy, pp. 314-327, 2006

[10] M. Myers and S. Youndt, “An introduction to hardware-assisted virtual
machine (HVM) rootkits”, White Paper of Crucial Security, 2007

[11] D. A. D. Zovi, “Hardware Virtualization Rootkits”. [Online].
Available: http://www.theta44.org/software/ HVM_Rootkits_ddz_bh-
usa-06.pdf

[12] J. Rutkowska, “Subverting Vista Kernel for Fun and Profit”. [Online].
Available: http://blackhat.com/presentations/bh-usa-06/BH-US-06-
Rutkowska.pdf

[13] J. Heasman, “Implementing and detecting a PCI rootkit,” White paper
of Next Generation Security Software Ltd., 2007.

[14] J. Heasman, “Implementing and detecting an ACPI BIOS rootkit,”
White paper of Next Generation Security Software Ltd., 2006.

[15] L. Duflot, “Using CPU system management mode to circumvent
operating system security functions”, CanSecWest Applied Security
Conference, Vancouver, Canada, 2006.

[16] F. Wecherowski, “A real SMM rootkit: Reversing and hooking BIOS
SMI handlers,” Phrack Magazine, Volume 13, Issue 66, 2009.

[17] R. Wojtczuk and J. Rutkowska, “Attacking SMM memory via Intel
CPU cache poisoning”, White Paper of Invisible Things Lab, 2009.

[18] N. Kumar and V. Kumar, “Vbootkit: Compromising Windows Vista
security”, Black Hat USA Conference 2007, Las Vegas, 2007.

[19] E. Florio and K. Kasslin, “Your computer is now stoned (again!): The
rise of MBR rootkits”, Technical Report of Symantec.

[20] F. F. Guerra and M. A. Besteiro, “Attacks on .NET – UnCLR future”,
Virus Bulletin Conference 2002, Oxfordshire, England, 2002.

[21] J. Bickford et al., “Rootkits on Smart Phones: Attacks, Implications
and Opportunities,” in Workshop on Mobile Computing Sys. and
Appl. (HotMobile’10). ACM, 2010.

[22] P. Silberman, “FUTo”, Uninformed, Volume3, Article 7, 2006.
[23] J. Butler and S. Sparks, “ShadowWalker: Raising the bar for Windows

rootkit detection,” Phrack Magazine, Volume 11, Issue 63, 2005.
[24] A. Kapoor and A. Sallam, “Rootkits Parte 2: Manual Técnico”,

Technical Report of McAffee, 2007.
[25] T. M. Arnold, “A comparative analysis of rootkit detection

techniques”, M. Thesis, University of Houston Clear Lake, 2011.
[26] B. Blunden, The Rootkit Arsenal: Evasion in the Dark Corners of the

System. Jones & Bartlett Publishers, Massachusetts, USA, 2009.
[27] G. Hoglund and J. Butler, Rootkits: Subverting the windows kernel.

Addison Wesley, Boston, USA, 2006.
[28] D. Harley and A. Lee, “The root of all evil: Rootkits revealed”,

Technical Report of ESET, 2009.
[29] J. Butler and G. Hoglund, "VICE – Catch the hookers! (Plus new

rootkit techniques)", Black Hat USA 2004 Conference, Las Vegas,
USA, 2004.

[30] J. Rutkowska, "Detecting Windows Server compromises with
Patchfinder 2”, Personal Communication, January 2004.

[31] Y.-M. Wang, "Strider Ghostbuster: Why it’s a bad idea for stealth
software to hide files", Technical Report MSR-TR-2004-71 of
Microsoft, 2004.

[32] H. Yin et al., "HookScout: Proactive binary-centric hook detection”,
7th Conf. on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA’10), Bonn, Germany, 2010.

[33] P. Szor, The Art of Computer Virus Research and Defense. Symantec
Press, Addison Wesley, Boston, USA, 2005.

[34] D. Quist and V. Smith, “Detecting the Presence of Virtual Machines
Using the Local Data Table”, White Paper of Offensive Computing,
2006

[35] J. Butler and P. Silberman, "RAIDE: Rootkit Analysis IDentification
Elimination", Black Hat USA 2006 Conference, Las Vegas, USA,
2006.

[36] T. Shields, “Survey of Rootkit Technologies and Their Impact on
Digital Forensics”, Personal Communication, 2008.

[37] J. Rutkowska, “System Virginity Verifier: Defining the Roadmap for
Malware Detection on Windows Systems”, Hack in the Box Security
Conference, Kuala Lumpur, Malaysia, 2005.

[38] J. Rutkowska and A. Tereshkin, “IsGameOver() Anyone?”, Invisible
Things Lab, 2007.

[39] E. Metula, Managed Code Rootkits: Hooking into Runtime
Environments. Syngress, 2010.

