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Abstract—Computer security is an old problem, as old as 

computers themselves. The evolution of computer threats has 

also experienced an exponential complexity development, being 

the last example of that evolution the malware categorized as 

rootkits or stealth malware. A rootkit is code that is used by an 

attacker to keep the legitimate users and administrators of a 

system unaware of the code, and thus the attacker’s presence 

on the compromised system. This paper will discuss the history 

of rootkits from the basic modification of system binaries to the 

cutting edge research being develop today. A discussion of each 

type of rootkit will be followed by an overview of rootkit 

detection techniques and how to know when a rootkit has been 

deployed. Finally new techniques and research directions will 

be discussed. 

Malware; Rootkits; Stealth software; Hooking; Binary 

patching 

I.  INTRODUCTION 

The term “rootkit” has evolved over time, from early 
*NIX toolsets used to attack mainframes to computer worms 
like Stuxnet [1].  

The best way to understand what the term rootkit means 
is by looking at the role it plays in the phases of a computer 
attack. Generally, successful targeted computer attacks 
involve two phases (obviating a prephase of achieving the 
necessary information to be able to reach the desired 
machine or network): breaking into the machine (or 
“rooting” it) and maintain continued access to it in order to 
perform the supposedly malicious actions with or over it. 

Is in this second phase of the attack where the rootkit 
comes into play. A really successful attack, if not properly 
concealed, would be ineffective in a short period of time, 
generally until the system administrator notices the 
penetration. Of course there are kinds of attack that can 
accomplish its objectives without the need to conceal its 
actions, but except for those scenarios (such as information 
stealing without the need to conceal the fact that the 
information has been stolen, or denial of service attacks, 
which doesn’t have even the need of rooting the machine 
under attack), concealing the attack is as important as 
penetrating the target. 

Initially, the term rootkit referred to a tool or suite of 
tools used to maintain administrative level access on a 
compromised system. Something as simple as a modified 

configuration file or binary could be used to allow an 
attacker uncontrolled access to a target machine for an 
indeterminate amount of time. The techniques that rootkit 
authors employ have evolved with computing systems and 
networks. What began as user-land modified UNIX binaries 
[27][3][4] has changed over time to kernel-mode code that 
use complex features of the microprocessors and subvert 
even the operating system to achieve its goals. They can 
even be deployed in the form of hypervisors in 
virtualization-enabled systems to control the operating 
system itself [2]. 

In this paper, we will understand a rootkit as any 
software that enables continued privileged access to a 
computer while actively hiding its presence and other 
information from administrators by subverting standard 
operating system functionality or other applications. 
Although the definition involves the concept of machine 
control, the main contribution of a rootkit to its goals is the 
idea of operation concealment, and this is part of its 
operation what is generally understood when talking about 
rootkits [27][28]. Therefore only the techniques which allow 
the concealment of the rootkit will be presented. Also, when 
talking about rootkits, we could distinguish between the 
rootkit itself and an associated piece of software (possibly 
malicious) which the rootkit would hide. We won’t make 
this distinction and will use the term rootkit interchangeably, 
meaning both the rootkit only used for the concealment of 
other piece of software or a malicious software with rootkit 
capabilities. 

II. ORIGINS 

Rootkits, in the form of stealth functionality within 
software, have been in existence since at least 1988. The first 
notable piece of stealth code was the Brain virus [36]. This 
virus affected the boot sector of storage media formatted 
with the DOS File Allocation Table (FAT) system. What 
makes this virus interesting with regards to rootkit or stealth 
technologies is that this virus was the first one in existence to 
include code created to hide the virus from detection. The 
virus changed the boot sector of floppy disks to spread itself, 
but it hooked INT 13 so when an attempt of reading the boot 
sector was made, the virus would present the original one 
[33]. This means everything looked correct, but in fact there 
were an ongoing infection in the machine. 



The next step were *NIX machines. In an (successful) 
attempt of obtaining remote root level access, system 
binaries were substituted by modified versions which 
performed as the original with subtle changes. Access was 
maintained by installing backdoors in net-aware applications 
such as telnet or ftp daemons. Especial programs could be 
run without noticing thanks to a patched version of ps, and 
logs were modified (or even not produced) by those modified 
versions of the system binaries. However, this way of attack 
was easily defeatable, as a simple checksum would do. 

The next phase for rootkit attacks was the operating 
system kernel. This allowed similar results, but is far more 
difficult to detect. So rootkits started being deployed as 
kernel modules. This way, rootkits had unrestricted access to 
the system and they could easily subvert it. The detection of 
kernel-mode rootkits was not easy and detection software 
had to be heavily redesigned. And once opened this 
alternative, rootkit war became a how-deep-you-can-go 
game. The nearer to the hardware, the more difficult to 
detect. So research directions went through very specialized 
software such as rootkits that used System Management 
Mode (SMM), firmware rootkits, BIOS rootkits, Master 
Boot Record (MBR) rootkits and when virtualization 
technology came into play, virtualization rootkits. 

Right now, with the rise of mobile technology and the 
fact that some of these mobile platforms use virtual machine 
technologies such as Java or .NET, there is renewed interest 
in the so-called managed-code rootkits. 

III. CLASSIFICATION 

There are different criteria to classify rootkits. The main 
ones are: 

 Operation layer of the rootkit in the system 
architecture [6][7]. 

 Stealth malware taxonomy by Rutkowska [5]. 
 

A. Classification based on layers 

Computer systems can be described as a set of layers 
where each one uses services provided by layers below it, 
similarly to network protocols. Hardware would be the base 
layer of the computer system, and typically, user programs 
would fit in the top layer as shown in Fig. 1. 

 

 

Figure 1. Computer System Layered Architecture. 

 

Upper layers represent application software and lower 
layers represent the operating system, hypervisor (if the 
processor supports them) and hardware peripherals firmware 
code. The lower the layer, the harder to write the software. 

Note that this classification is a generalization of a 
simpler one based on the operating mode of the processor 
under which the rootkit operates. In this classification, both 
application and library layer rootkits would be classified as 
user-mode rootkits, whereas kernel layer rootkits would be 
classified as kernel-mode rootkits. Usually, also 
virtualization and firmware layer rootkits would get 
classified as kernel-mode rootkits, as the processor must 
operate in the most privileged mode for this kind of rootkits 
to operate. As a side note, rootkits operating in SMM 
(System Managed Mode) and Master Boot Record (MBR) 
rootkits would also be classified as kernel-mode rootkits, and 
could fit both in the virtualization layer and in the firmware 
layer, as this kind of rootkits have characteristics of both 
layers in common. 

 

1) Application layer 
These rootkits consist of recompiled binaries (or patched 

ones) that replace the original user-mode system binaries and 
operate in a malicious manner. Historically, these rootkits 
have been also known as Trojans, although some authors 
disagree [7]. 

 

2) Library layer 
These rootkits are conceptually equal to rootkits 

classified as application layer rootkits, except that they are 
targeted to system-wide dynamic link libraries. This means 
they are in fact altered versions of the original user-mode 
system libraries. This way, they can affect the whole system 
on a process basis, and thanks to dynamic linking, will affect 
every new process. To explain this a little further, the 
libraries which are the usual target of these rootkits are 
loaded by (almost) every process running in the system. 
These libraries usually control the communication between 
the processes and the operating system services, so 
subverting them is a good way to subvert the whole system. 

Also, in this category, we would classify those rootkits 
implemented as dynamic-link libraries that use alternate 
methods to get loaded in every process, but does not need to 
subvert original operating system libraries. This kind of 
rootkits usually modifies the victim process data or code via 
binary patching to be able to perform its behavior. 

 

3) Kernel layer 
Kernel layer rootkits are implemented by replacing or 

writing new code directly into the running system kernel. 
This goal is typically achieved by writing a device driver on 
a Windows system or creating a Loadable Kernel Module 
(LKM) on a Linux system [3]. 

When a user-mode process request information or a 
resource from the operating system kernel, there is a specific 
path of system calls that must take place. Hooking in any of 
these places will result in the execution of rootkit code 
instead of original system requested behavior. This way the 
system is effectively subverted. 



Technically, these rootkits could also replace the kernel 
image with a recompiled (or patched) one, but this is rare and 
very uncommon. 

 

4) Virtualization layer 
These kinds of rootkits are the most dangerous ones as 

detection is theoretically impossible, although some author 
suggest that the detection can be achieved by indirect means. 
They are implemented as hypervisors and basically run in a 
layer below the most privileged layer of execution, which is 
where the operating system resides. These rootkits need the 
existence of any virtualization technology in the processor 
such as Intel VT-x or AMD-V. They can virtually make 
everything they desire as they monitor every operation that 
takes place in upper levels. As an example, the rootkit could 
monitor, log, modify or even drop packets of a network 
connection and the compromised system will not notice 
anything. 

 

5) Firmware layer 
The general concept of firmware rootkits is that firmware 

can be modified by privileged code, and firmware is a type 
of code that sooner or later will be executed. This code also 
has some interesting properties, as for example, it is 
extremely difficult to write and to detect. Other advantage 
for a rootkit is that it is located very near the real hardware 
and can be used to subvert the system without the need to 
subvert (almost) the operating system. Also, if the firmware 
software targeted is the BIOS instead of a peripheral 
firmware, and as this software is executed prior to any 
operating system initialization, the rootkit potentially can do 
anything as it could control every aspect in the system. 

These kinds of rootkits are very difficult to remove, as 
reinstallation of operating system, or reformatting the hard 
disk, or even installing a new hard disk, will not dispose the 
subversive code. The affected piece of hardware should be 
replaced or returned to its original state to ensure rootkit 
removal. 

 

B. Stealth malware classification by 

Rutkowska 

The approach used in Rutkowska’s classification is based 
in the concept of system compromise [5]. According to this 
idea, there are four distinct types of malware, and each one 
compromises the system security in different degrees. 

It is important to note that Rutkowska’s classification is 
not based in the common distinction of user versus kernel 
mode. 

 

1) Type 0 malware 
This type of malware is not considered malware by 

Rutkowska’s definition as it does not compromise the system 
in any way. It interacts with the system in a documented 
way, and it does not subvert the system in any way. It is 
presented as a legal user-mode application. Of course, the 
application could perform some behavior considered 
malicious, as deleting all the documents in a user folder (this 
would match the AV industry definition), but from a system 

perspective, the application is legal. Fig. 2 represents 
visually this kind of malware. 

 

 

Figure 2. Type 0 malware 

 

2) Type 1 malware 
When system read-only resources, such as executable 

code sections, constant data tables, BIOS code or PCI 
expansion EEPROMS are modified by a rootkit in such a 
way that the rootkit achieves its goal, the rootkit is classified 
as type 1 malware. These rootkits performs their operation 
by different kinds of hooking. Fig. 3 represents visually this 
kind of malware. 

 

 

Figure 3. Type 1 malware 

 

3) Type 2 malware 
As opposed to type 1 malware, type 2 malware does not 

modify read-only resources, but instead does modify sections 
which are by nature dynamic and are subject to be changed 
by the operating system itself. Such sections can be dynamic 
data structures which the rootkit modify in such a way that it 
is able to achieve its goals. Fig. 4 represents visually this 
kind of malware. Examples of this are DKOM (Direct 
Kernel Object Manipulation) techniques [22]. 



 

Figure 4. Type 2 malware 

 

4) Type 3 malware 
Type 3 malware is the more dangerous malware as it 

does not need to modify in any way a system to compromise 
it. To work, this kind of rootkits needs some kind of 
virtualization platform in the system. Fig. 5 represents this 
malware. 

 

 

Figure 5. Type 3 malware 

The basic way to subvert the system by the rootkit 
(which takes the form of a hypervisor) is performing its 
behavior when the normal system operation is intercepted by 
the virtualization technology. 

IV. TECHNIQUES USED BY ROOTKITS 

This section discusses how rootkits operate to achieve its 
goals. Usually, the rootkit must be loaded in memory. In the 
case of user-mode library rootkits, the dynamic library must 
be loaded in the victim process address space. In the case of 
kernel-mode rootkits, it must be loaded in the kernel address 
space. There are a variety of techniques, some legal and 
some illegal or based on some form of exploit. However, 
techniques to achieve the rootkit loading in the desired 
address space are beyond the scope of this paper. Rootkit 
techniques, understood as a way to achieve rootkit behavior, 

are based on some way of binary patching, both in user and 
kernel mode. 

A. Common hooking techniques 

There are two basic ways of code detouring [26]: 
 

 Table based detouring 

 Inline code patching detouring 
 
The idea behind table based detouring is that certain 

pieces of code will invoke API functions resident in other 
modules whose address is stored in a table, usually filled in 
the linking process. By overwriting pointers in this table, a 
rootkit can redirect functions to its own code. A visual 
explanation can be found in Fig. 6: 

 

 

Figure 6. Table hooking 

The function table contains different function pointers 
that are invoked indirectly. At address 0xAABBCCD4, 
originally resides the function pointer to Function2, but the 
rootkit installs its own function by overwriting this entry in 
the table. When the code invokes Function2, it will in fact 
invoke NewFunction2. 

As table-based hooking is relatively easy to detect, the 
other way of detouring code is by inline hooking. As its 
name suggest, in-memory code will get patched so it will 
execute whatever a rootkit writer desires. Although any kind 
of patching is theoretically possible, the most common way 
to do it is to overwrite the function prologues of the 
functions that the rootkit is interested in. The new code 
usually is some form of jump to a rootkit function, which can 
return to the original function or directly to the calling code 
depending on the desired behavior. A visual explanation can 
be found in Fig. 7. 

The FunctionX prologue is overwritten by the rootkit, 
changing these instructions with a jump to rootkit detouring 
code. The first thing that the detoured rootkit function must 
do is to set the original stack frame. Later it can perform its 
behavior and finally it can or cannot return to the original 
function. In any case it must correctly balance the stack. 



 

Figure 7. Inline hooking 

B. User mode techniques 

The tables that a library rootkit targets usually are the 
Import Address Table (IAT) and the Export Address Table 
(EAT) [27]. The IAT is the data structure within a PE file 
where the operating system loader fills the addresses of 
imported functions. The EAT is the table where a module 
reports its exported functions. This table can also be 
overwritten by library rootkits, although not very usual, as it 
will be of use only in case there were new dynamic modules 
loaded in the process address space. In that case, the new 
loaded module would obtain the addresses the rootkit 
overwrote in the EATs when the loader fills its IAT. 

Other technique that user-mode rootkits frequently use is 
inline hooking. This technique achieves the same effect as 
table hooking, but makes a bit more involved the detection of 
the hook. Notice that in a table hook, the address of the 
imported function points into the rootkit module instead of 
the original one. With inline hooking, all table pointers are 
correct, but when the API function is invoked, it will jump to 
the rootkit function.  

Anyway, inline hooks are not especially difficult to 
detect, as a checksum of the code section that takes into 
account the relocation addresses would be enough to detect 
the hook. Other detection way is disassembling the prologue 
of the functions that are suspect of being hooked, but 
although inline hooking takes place generally at the 
beginning of the function, nothing prevent an inline hook 
inside a function, which makes detection quite more difficult. 
In this case, inline hooking detection could be accomplished 
by static analysis. 

 

C. Kernel mode techniques 

Kernel-mode techniques can be classified in two main 
types coinciding with Rutkowska’s classification: type 1 and 
type 2 techniques. 

Type 1 techniques are in essence the same as presented in 
user-mode techniques. The main difference is that the rootkit 
driver can hook in many places. Fig. 8 represents the code 
path for serving a particular service call [26]. 

 

 

Figure 8. Windows service call path 

 
When an application invokes a system service, it 

generates a 0x2E interrupt. This value is used to index a 
processor table denominated Interrupt Descriptor Table 
(IDT). The processor basically generates a jump to the code 
function address in the IDT entry. This function is 
KiSystemService which in turn indexes a table denominated 
System Service Dispatch Table (SSDT). This SSDT table 
contains the addresses of the services exported by the kernel. 
The index used in the SSDT comes in the form of a 
parameter passed from the application. Alternatively, in 
modern processors, the mechanism is basically the same, but 
based in the SYSENTER instruction, which performs the 
transition between user and kernel mode. This instruction 
uses some processor Model Specific Registers (MSRs) 
which perform a call to a function denominated 
KiFastCallEntry. This function in turn invokes 
KiSystemService to service the call. 

 

1) Type 1 Techniques 
The techniques used by type 1 rootkits are the exposed 

before: table hooking and inline hooking. But as can be seen 
in Fig. 8, there are a lot more places to hook: 

 

 IDT: The Interrupt Descriptor Table is a data structure 
used by Intel processors to route the interrupts that take 
place in the system. In older systems, interrupts are the 
preferred portable way to invoke operating system 
services. The operating system reserves an interrupt 
number to this task. In Linux Systems, the assigned 
interrupt is 0x80, while in Windows Systems it is the 



0x2E. A rootkit can hijack this interrupt to route the 
petition of a generic system service to itself. This is not 
very popular as it involves a lot of work for the rootkit 
as it must route every function in the system, even those 
it is not interested in, basically substituting the operating 
systems routing mechanism [23]. 

 

 SYSENTER: The SYSENTER instruction is the new 
path into kernel-mode in newer processors. It is 
logically equivalent to the interrupt mechanism, 
although it is implemented in a different way. From the 
technical point of view, it consults certain processor 
MSRs and requires the Global Descriptor Table (GDT) 
to have certain layout. The MSRs contains the kernel 
memory descriptor, and the EIP of the code to be 
invoked. A rootkit could detour the path into kernel-
mode by writing into the 0x176 MSR (containing the 
EIP). This technique is logically equivalent to the IDT 
detouring one. 

 

 SSDT: The System Service Descriptor Table is 
Windows specific data structure which routes system 
calls to the functions that serves them. It is a system 
wide table, which makes it very attractive to rootkits, as 
simple table hooking allows the rootkit to affect the 
whole system. The main disadvantage is that hooking 
this table is easily detected (if virtual memory hiding 
techniques [23] are not involved). 

 

 IRP Dispatch Table: The living of a system call does 
not end when a servicing function in the kernel gets 
invoked by the SSDT. Depending on the service, it 
could require the system to communicate with a 
peripheral. If this is the case, the system will issue an 
Interrupt Request Packet (IRP) that will travel through 
the stack of drivers. A visual representation can be seen 
in Fig. 9 and Fig. 10. The IRP travels through a stack of 
drivers, each one servicing a different aspect of the 
request. For example, in the case of a file read, drivers 
near the top of the stack are the file system drivers, 
while lower drivers communicate physically with the 
disk itself. This situation will happen also if a peripheral 
issues an interrupt. An IRP contains the particular 
request of the service being invoked, and is filled 
through its travel with additional data by the drivers 
encountered in the corresponding stack. A driver 
contains a table of functions which responds to petitions 
made by the operating system in certain situations. 
Obviously, these functions can be detoured by a rootkit 
to achieve its behavior. 

 

Figure 9. Windows API call serviced by a driver 

 

 

Figure 10. IRP traverse through driver stack 

 
 

2) Type 2 Techniques 
The basic idea behind type 2 techniques is the 

manipulation of operating system data structures. This way, 
the rootkit does not need to modify the operating system in 
any way, as it will operate in a normal way. The difference is 
in the data that the operating system handles, and, if data is 
missing, the operating system cannot retrieve it. There are 
lots of operating system data structures that can be modified, 
but a very common target that will serve as example is the 
process list. 

Windows systems save the active processes in the system 
in a doubly-linked list. A rootkit could modify pointers in 
this list to hide effectively a process. A visual representation 
can be seen in Fig. 11. 

 

 

Figure 11. Processes list manipulation 

 



A hypothetical rootkit could manipulate pointers in the 
EPROCESS A and EPROCESS C data structures to hide the 
presence of EPROCESS B. The operating system would not 
notice the existence of process B because it would be found 
when traversing the EPROCESS list. 

 

3) Filter drivers 
One of the common extensions supported in the I/O 

model of Windows Systems, is the concept of filter driver. 
These drivers are conventional drivers installed in the stack 
of drivers which can control the flow of IRPs. This means 
that this type of drivers are basically observers of IRPs that 
can alter the content of those IRPs and the call flow of the 
requests across the stack of drivers allowing or denying the 
IRP to progress. 

Initially, these drivers where used on top of file system 
drivers in order to implement antiviral functionality. Today, 
a rootkit could install itself as a filter driver and control, for 
example, the access to its own binary image on disk, making 
it effectively invisible. 

 

4) SMM Rootkits 
One idea in rootkit research and development is always 

try to obtain any kind of advantage over the target software. 
This lead to the exploring of different alternatives such as 
using even more privileged processor modes. Software 
operating in System Management Mode (SMM) has by 
definition more privilege than the software operating in ring 
0 in processor protected mode. Thus it is a good mode to 
execute a rootkit as it can subvert the operating system in an 
almost impossible to detect fashion. Further details on this 
technique can be found in [15][16][17]. 

 

5) MBR Rootkits 
Master Boot Record rootkits are those which overwrite 

the system’s MBR in order to gain execution before the 
operating system is loaded in memory, in order to subvert it 
[18]. Generally, these rootkits operate by hooking the INT 
13h (which controls the BIOS access to disk) and control 
when the operating system image is loaded, and overwrite 
certain elements in the aforementioned operating system 
image. The real rootkit module usually is a normal operating 
system citizen (eg. a driver), but the deployment and 
installation process uses the MBR to allow the rootkit to be 
loaded in a very stealthy way [19]. 

 

6) ACPI and PCI Rootkits 
In the race of getting unnoticed and lower-level, proof of 

concept rootkits have been developed which target ACPI 
(Advanced Configuration Power Interface) and PCI 
(Peripheral Component Interconnect) BIOSes. 

This kind of rootkits are particularly dangerous, as the 
lower the rootkit is installed, the more difficult both to detect 
and to correctly erase it. These rootkits can even be written 
in other language than x86 assembler, as they target the 
BIOS of different expansion cards, which can use other type 
of processors. Nonetheless, they can correctly interface with 
the operating system, as AML (ACPI Machine Language), in 

the case of ACPI rootkits, is a high level language that 
allows interacting with system memory and I/O space [14]. 
The same holds true in case of PCI rootkits [13]. 

 

7) Virtual Machine-based Rootkits 
These rootkits exists in two flavors: software based and 

hardware based. 
 Software virtual machine based rootkits generally 

operate by modifying the boot sequence and execute the 
operating system into some kind of virtual machine such as 
VirtualPC [9]. 

On the other hand, Hardware Virtual Machine (HVM) 
rootkits use new virtualization technologies such as AMD-V 
(Pacifica) or Intel VT-x (VanDerPool), which have 
introduced a new layer of execution (aka Ring -1) that can be 
subverted and exploited [10]. 

The main idea is that these rootkits are executed as 
hypervisor in the target machine, effectively monitoring the 
execution of the whole system. As those technologies are 
prepared for executing virtual machines, they provide full 
virtualization, and that makes impossible to detect directly 
the existence of a hypervisor from a virtual machine. This 
feature would make the rootkit truly undetectable [11] [38]. 

Also, these rootkits could install themselves on the fly, 
and move the system to a virtual machine without the 
operating system notice, making them a very dangerous kind 
of rootkits [12] [34]. 

D. Rootkit techniques overview 

An overview of the rootkits most found in the wild and 
the techniques they use is presented in Table I. 

TABLE I 
ROOTKIT TECHNIQUES  

 User Kernel  
Malware IAT Inline SSDT DKOM Filter Memory IRP Nº 

NTillusion  X      0 
BootRootkit    X    0 
ShadowWalker    X  X  0 
Vanquish  X      1 
DigitalNames   X     1 
Sony F4I   X  X   1 
WinKRootkit     X   1 
PWS-Gogo       X 2 
PigSearch   X  X   5 
CommonName   X     7 
ISearch   X     8 
ALI   X     9 
He4Hook   X     9 
FU    X    10 
CoolWeb  X      11 
Maddis X       15 
AFX  X      40 
PWS-Progent  X      48 
Mailbot.c   X     48 
Qoolaid X       58 
Vanti  X  X    60 
EliteBar X X      77 
PWS-Goldun   X     223 
HackerDefender  X      304 
BAC  X X     394 
Feebs  X      556 
CKB   X     707 

Frequency 3 10 12 4 3 1 1 2595 



The last column shows the number of variants existing 
since 2003. Previous columns represent the techniques 
categorized in user and kernel modes. Finally, the last line 
shows the frequency of the technique found in the listed 
rootkits. Preferred techniques in kernel mode are SSDT 
hooking and DKOM process hiding, while inline hooking is 
the most used approach in user mode. The data was extracted 
from [24]. 

V. ROOTKIT DETECTION TECHNIQUES 

Current rootkit detection techniques are: 

 Behavioral detection 

 Integrity checking 

 Signature based detection 

 Difference based detection 
 

A. Behavioral detection 

The base of the behavioral detection is trying to measure 
the effects that a rootkit might cause in a system. This means 
it could theoretically detect previously unknown rootkits. 

In this field, there are two main streams: 

 Detecting diverted execution paths: involves 
detecting deviations in executed instructions [37] 
and detecting hooks [29][31] [32][35]. 

 Detecting alterations in the number, order and 
frequency of system calls [30]. 

 
These techniques may suffer from a high false positive 

rate, as it is difficult in a production system to correctly 
measure certain of the needed characteristics. For example, 
the same system call could execute a different path due to the 
particular system state. Also, although a hook seems always 
illegal, legitimate software can also use hooks to implement 
part of its functionality (in a very unsafe way). Even the 
operating system installs hooks when patching parts of the 
kernel. 

B. Integrity checking 

Integrity checking consists on detecting unauthorized 
changes to system files or to loaded operating system 
components in memory. 

The operation mode of detectors implementing this 
technique is as follows: initially they create a baseline 
database of some kind of hash values. Later, and generally in 
a periodic fashion, the detector calculates and compares the 
hashes of the system being monitored against the initial 
trusted database. 

C. Signature based detection 

This detection technique is the oldest of all, and has been 
used to detect every type of malware since the first antivirus 
scanner was released. 

This technique searches memory or the file system for 
unique byte patterns (known as signatures) that can be found 
in the code of the rootkit. 

This technique is highly accurate, but completely 
ineffective against unknown rootkits or variants of a known 
one, or even against obfuscated or packed code.  

D. Difference based detection 

The idea behind this detection technique is that if a 
rootkit is present in a system, it is probably hiding 
something. It is also known as crossview detection [8][31]. 

To detect a rootkit then, a detector should compare the 
differences existing between a common system view and a 
real system view. If differences appear between what the 
common view shows and what is really going on in the 
system (provided by the real view), then a rootkit is 
operating in the system. 

The principal problem of these detectors is obtaining 
correctly the real view of the system. Ideally they should 
relay only in its own code and directly access the hardware 
to scan files, memory, registry entries and the like. On the 
other hand, that is a daunting task and all detectors in this 
category finally use the operating system in some way. This 
is dangerous as if the rootkit is operating in the functionality 
that the detector uses, the detector won’t catch the rootkit. 

E. Rootkit detection techniques overview 

An overview of the implementation of anti-rookit 
techniques in the most current representative tools is 
presented in Table II. 

 

TABLE III 

ANTI - ROOTKIT TECHNIQUES 

Anti Rootkit 
Tool 

Hooking Heuristic Memory 
scanning 

Crossview Signature 

ATool X     
Avast!  X X X X 
AVZ   X X X 
CMC X   X  
ComboFix   X X X 
ESET    X  
F-Secure  X X X X 
GMER X  X X  
Helios X   X  
Hidden Finder    X  
Ice Sword X  X X  
K X-Ray X  X X  
Kernel 
Detective 

X  X X  

Kaspersky  X X X X 
Malware Bytes 
Antimalware 

 X X X X 

Microsoft 
Security 
Essentials 

 X X X X 

McAffee X   X  
Panda  X X X X 
Rootkit 
Revealer 

   X  

Rootkit 
Unhooker 

X  X X  

RootRepeal X  X X  
Sophos    X  
Spy Bot  X   X 
Moosoft 
Cleaner 

 X  X X 

Trend    X  
VBA 32 X X X X  
XeuTr X  X X  

Frequency 12 9 16 25 10 

 



The columns referring to hooking and heuristic belong to 
behavior based detection techniques, while memory scanning 
belongs both to signature and integrity detection techniques. 
The most used approach is crossview detection. 
Surprinsingly, signature based detection is not among the 
preferred approaches although every antivirus company 
provides a rootkit detection tool within their products. More 
information can be found at [25]. 

VI. RESEARCH 

The future evolution of rootkits is determined by the 
future platforms. In this sense, with the raise of software 
virtual machine systems (Android, .NET), rootkits will 
sooner or later target them [21]. 

Previous work [20] shows how managed code, as every 
other software, can be subverted and should be of no surprise 
the fact that malware is already spreading across systems that 
use managed code, as for example, Android mobiles. 

The term Managed Code Rootkit (MCR) is the general 
denomination for this new type of rootkits. The principal 
reasons why these rootkits result attractive to attackers is that 
the attack surface is rapidly growing and they have a single 
control point because they always target the underlying 
virtual machine. Moreover, rootkit writers can port their 
creations among different platforms without rewriting any 
code [39]. An Android rootkit would work on every Android 
mobile, as well as a .NET rootkit will work on any .NET 
platform including desktop computers and Windows Phone 7 
mobiles. 
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